Author: Mehta, Mihir; Julaiti, Juxihong; Griffin, Paul; Kumara, Soundar
Title: Early Stage Machine Learning–Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach Cord-id: p4iqplsz Document date: 2020_9_11
ID: p4iqplsz
Snippet: BACKGROUND: The rapid spread of COVID-19 means that government and health services providers have little time to plan and design effective response policies. It is therefore important to quickly provide accurate predictions of how vulnerable geographic regions such as counties are to the spread of this virus. OBJECTIVE: The aim of this study is to develop county-level prediction around near future disease movement for COVID-19 occurrences using publicly available data. METHODS: We estimated coun
Document: BACKGROUND: The rapid spread of COVID-19 means that government and health services providers have little time to plan and design effective response policies. It is therefore important to quickly provide accurate predictions of how vulnerable geographic regions such as counties are to the spread of this virus. OBJECTIVE: The aim of this study is to develop county-level prediction around near future disease movement for COVID-19 occurrences using publicly available data. METHODS: We estimated county-level COVID-19 occurrences for the period March 14 to 31, 2020, based on data fused from multiple publicly available sources inclusive of health statistics, demographics, and geographical features. We developed a three-stage model using XGBoost, a machine learning algorithm, to quantify the probability of COVID-19 occurrence and estimate the number of potential occurrences for unaffected counties. Finally, these results were combined to predict the county-level risk. This risk was then used as an estimated after-five-day-vulnerability of the county. RESULTS: The model predictions showed a sensitivity over 71% and specificity over 94% for models built using data from March 14 to 31, 2020. We found that population, population density, percentage of people aged >70 years, and prevalence of comorbidities play an important role in predicting COVID-19 occurrences. We observed a positive association at the county level between urbanicity and vulnerability to COVID-19. CONCLUSIONS: The developed model can be used for identification of vulnerable counties and potential data discrepancies. Limited testing facilities and delayed results introduce significant variation in reported cases, which produces a bias in the model.
Search related documents:
Co phrase search for related documents- absence presence and accuracy value: 1
- absence presence and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absence presence and long period: 1, 2, 3, 4, 5
- absence presence and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absence presence and machine learning model: 1, 2, 3, 4
- accuracy auc and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- accuracy auc and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy auc and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- accuracy auc and machine learning technique: 1, 2
- accuracy value and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- accuracy value and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- accuracy value and machine learning model: 1, 2, 3
- actual proportion and acute respiratory syndrome: 1, 2
- acute respiratory syndrome and long period: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory syndrome and machine learning technique: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date