Selected article for: "acute respiratory infection and lung examination"

Author: Sitaula, Chiranjibi; Aryal, Sunil
Title: New bag of deep visual words based features to classify chest x-ray images for COVID-19 diagnosis
  • Cord-id: lnq7cuoa
  • Document date: 2021_6_18
  • ID: lnq7cuoa
    Snippet: PURPOSE: Because the infection by Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) causes the Pneumonia-like effect in the lung, the examination of Chest X-Rays (CXR) can help diagnose the disease. For automatic analysis of images, they are represented in machines by a set of semantic features. Deep Learning (DL) models are widely used to extract features from images. General deep features extracted from intermediate layers may not be appropriate to represent CXR images as they have a
    Document: PURPOSE: Because the infection by Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) causes the Pneumonia-like effect in the lung, the examination of Chest X-Rays (CXR) can help diagnose the disease. For automatic analysis of images, they are represented in machines by a set of semantic features. Deep Learning (DL) models are widely used to extract features from images. General deep features extracted from intermediate layers may not be appropriate to represent CXR images as they have a few semantic regions. Though the Bag of Visual Words (BoVW)-based features are shown to be more appropriate for different types of images, existing BoVW features may not capture enough information to differentiate COVID-19 infection from other Pneumonia-related infections. METHODS: In this paper, we propose a new BoVW method over deep features, called Bag of Deep Visual Words (BoDVW), by removing the feature map normalization step and adding the deep features normalization step on the raw feature maps. This helps to preserve the semantics of each feature map that may have important clues to differentiate COVID-19 from Pneumonia. RESULTS: We evaluate the effectiveness of our proposed BoDVW features in CXR image classification using Support Vector Machine (SVM) to diagnose COVID-19. Our results on four publicly available COVID-19 CXR image datasets (D1, D2, D3, and D4) reveal that our features produce stable and prominent classification accuracy (82.00% on D1, 87.86% on D2, 87.92% on D3, and 83.22% on D4), particularly differentiating COVID-19 infection from other Pneumonia. CONCLUSION: Our method could be a very useful tool for the quick diagnosis of COVID-19 patients on a large scale.

    Search related documents:
    Co phrase search for related documents
    • abnormality detection and acute respiratory: 1
    • abnormality detection and lung infection: 1
    • accuracy yield and acute respiratory: 1, 2
    • accurate detection and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accurate detection and lung image: 1, 2
    • accurate detection and lung infection: 1, 2, 3, 4, 5
    • accurate representation and acute respiratory: 1, 2
    • accurately capture and acute respiratory: 1
    • accurately cxr image represent and lung image: 1
    • accurately work and acute respiratory: 1
    • acute respiratory and lung cancer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory and lung cancer cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory and lung image: 1, 2, 3, 4, 5, 6, 7
    • acute respiratory and lung infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25