Author: Meng, Yuqi; Zhao, Ying; Li, Zhixiang
Title: An early prediction of covid-19 associated hospitalization surge using deep learning approach Cord-id: m10k93fx Document date: 2020_9_17
ID: m10k93fx
Snippet: The global pandemic caused by COVID-19 affects our lives in all aspects. As of September 11, more than 28 million people have tested positive for COVID-19 infection, and more than 911,000 people have lost their lives in this virus battle. Some patients can not receive appropriate medical treatment due the limits of hospitalization volume and shortage of ICU beds. An estimated future hospitalization is critical so that medical resources can be allocated as needed. In this study, we propose to use
Document: The global pandemic caused by COVID-19 affects our lives in all aspects. As of September 11, more than 28 million people have tested positive for COVID-19 infection, and more than 911,000 people have lost their lives in this virus battle. Some patients can not receive appropriate medical treatment due the limits of hospitalization volume and shortage of ICU beds. An estimated future hospitalization is critical so that medical resources can be allocated as needed. In this study, we propose to use 4 recurrent neural networks to infer hospitalization change for the following week compared with the current week. Results show that sequence to sequence model with attention achieves a high accuracy of 0.938 and AUC of 0.850 in the hospitalization prediction. Our work has the potential to predict the hospitalization need and send a warning to medical providers and other stakeholders when a re-surge initializes.
Search related documents:
Co phrase search for related documents- long lstm short term memory and lstm layer: 1, 2, 3, 4, 5, 6
- long lstm short term memory and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long lstm short term memory and lstm model stack: 1
- long lstm short term memory and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- long lstm short term memory and lstm stack: 1
- long lstm short term memory and lung disease: 1, 2, 3
- long lstm short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- long lstm short term memory and machine learning deep learning: 1, 2, 3, 4, 5, 6, 7, 8, 9
- long lstm short term memory and machine learning model: 1, 2, 3, 4, 5
- loss function and lstm model: 1, 2, 3, 4
- loss function and lstm network: 1, 2
- loss function and lstm short term memory: 1, 2, 3, 4
- loss function and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and machine learning deep learning: 1, 2
- loss function and machine learning model: 1, 2, 3
- loss function entropy and machine learning: 1
- lstm layer and lung disease: 1
Co phrase search for related documents, hyperlinks ordered by date