Selected article for: "acute ards respiratory distress syndrome and macrophage recruitment"

Author: Ye, Yang; Zhang, Hua-Wei; Mei, Hong-Xia; Xu, Hao-Ran; Xiang, Shu-Yang; Yang, Qian; Zheng, Sheng-Xing; Gao Smith, Fang; Jin, Sheng-Wei; Wang, Qian
Title: PDX regulates inflammatory cell infiltration via resident macrophage in LPS-induced lung injury.
  • Cord-id: p1g20xbc
  • Document date: 2020_7_31
  • ID: p1g20xbc
    Snippet: Inflammatory cell infiltration contributes to the pathogenesis of acute respiratory distress syndrome (ARDS). Protectin DX (PDX), an endogenous lipid mediator, shows anti-inflammatory and proresolution bioactions. In vivo, the mice were intraperitoneally injected with PDX (0.1 µg/mouse) after intratracheal (1 mg/kg) or intraperitoneal (10 mg/kg) LPS administration. Flow cytometry was used to measure inflammatory cell numbers. Clodronate liposomes were used to deplete resident macrophages. RT-PC
    Document: Inflammatory cell infiltration contributes to the pathogenesis of acute respiratory distress syndrome (ARDS). Protectin DX (PDX), an endogenous lipid mediator, shows anti-inflammatory and proresolution bioactions. In vivo, the mice were intraperitoneally injected with PDX (0.1 µg/mouse) after intratracheal (1 mg/kg) or intraperitoneal (10 mg/kg) LPS administration. Flow cytometry was used to measure inflammatory cell numbers. Clodronate liposomes were used to deplete resident macrophages. RT-PCR, and ELISA was used to measure MIP-2, MCP-1, TNF-α and MMP9 levels. In vitro, sorted neutrophils, resident and recruited macrophages (1 × 106 ) were cultured with 1 μg/mL LPS and/or 100 nmol/L PDX to assess the chemokine receptor expression. PDX attenuated LPS-induced lung injury via inhibiting recruited macrophage and neutrophil recruitment through repressing resident macrophage MCP-1, MIP-2 expression and release, respectively. Finally, PDX inhibition of neutrophil infiltration and transmembrane was associated with TNF-α/MIP-2/MMP9 signalling pathway. These data suggest that PDX attenuates LPS-stimulated lung injury via reduction of the inflammatory cell recruitment mediated via resident macrophages.

    Search related documents:
    Co phrase search for related documents