Author: Acharya, Arpan; Pandey, Kabita; Thurman, Michellie; Klug, Elizabeth; Trivedi, Jay; Lorson, Christian L.; Singh, Kamal; Byrareddy, Siddappa N.
Title: Discovery and in-vitro evaluation of potent SARS-CoV-2 entry inhibitors Cord-id: pofyp5ao Document date: 2021_4_2
ID: pofyp5ao
Snippet: SARS-CoV-2 infection initiates with the attachment of spike protein to the ACE2 receptor. While vaccines have been developed, no SARS-CoV-2 specific small molecule inhibitors have been approved. Herein, utilizing the crystal structure of the ACE2/Spike receptor binding domain (S-RBD) complex in computer-aided drug design (CADD) approach, we docked ∼8 million compounds within the pockets residing at S-RBD/ACE2 interface. Five best hits depending on the docking score, were selected and tested fo
Document: SARS-CoV-2 infection initiates with the attachment of spike protein to the ACE2 receptor. While vaccines have been developed, no SARS-CoV-2 specific small molecule inhibitors have been approved. Herein, utilizing the crystal structure of the ACE2/Spike receptor binding domain (S-RBD) complex in computer-aided drug design (CADD) approach, we docked ∼8 million compounds within the pockets residing at S-RBD/ACE2 interface. Five best hits depending on the docking score, were selected and tested for their in vitro efficacy to block SARS-CoV-2 replication. Of these, two compounds (MU-UNMC-1 and MU-UNMC-2) blocked SARS-CoV-2 replication at sub-micromolar IC50 in human bronchial epithelial cells (UNCN1T) and Vero cells. Furthermore, MU-UNMC-2 was highly potent in blocking the virus entry by using pseudoviral particles expressing SARS-CoV-2 spike. Finally, we found that MU-UNMC-2 is highly synergistic with remdesivir (RDV), suggesting that minimal amounts are needed when used in combination with RDV, and has the potential to develop as a potential entry inhibitor for COVID-19.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date