Selected article for: "activator transducer and acute respiratory syndrome"

Author: Li, Hui; Du, Shaohui; Yang, Lina; Chen, Yangyan; Huang, Wei; Zhang, Rong; Cui, Yinghai; Yang, Jun; Chen, Dongfeng; Li, Yiwei; Zhang, Saixia; Zhou, Jianhong; Wei, Zhijun; Yao, Zhibin
Title: Rapid pulmonary fibrosis induced by acute lung injury via a lipopolysaccharide three-hit regimen.
  • Cord-id: ng5373kr
  • Document date: 2009_1_1
  • ID: ng5373kr
    Snippet: Based on the common characteristic of severe acute respiratory syndrome (SARS) and highly pathogenic avian influenza and the mechanism of inflammation and fibrosis, it is speculated that there should exist a fundamental pathological rule that severe acute lung injury (ALI)-induced rapid pulmonary fibrosis is caused by various etiological factors, such as SARS coronavirus, H5N1-virus, or other unknown factors, and also by lipopolysaccharide (LPS), the most common etiological factor. The investiga
    Document: Based on the common characteristic of severe acute respiratory syndrome (SARS) and highly pathogenic avian influenza and the mechanism of inflammation and fibrosis, it is speculated that there should exist a fundamental pathological rule that severe acute lung injury (ALI)-induced rapid pulmonary fibrosis is caused by various etiological factors, such as SARS coronavirus, H5N1-virus, or other unknown factors, and also by lipopolysaccharide (LPS), the most common etiological factor. The investigation employed intratracheally, and intraperitoneally and intratracheally applied LPS three-hit regimen, compared with bleomycin-induced chronic pulmonary fibrosis. Inflammatory damage and fibrosis were evaluated, and the molecular mechanism was analyzed according to Th1/Th2 balance, Sma- and MAD-related proteins (Smads) and signal transducer and activator of transcriptions (STATs) expression. The results suggested that rapid pulmonary fibrosis could be induced by ALI via LPS three-hits. The period from 3-7 days in the LPS group was the first rapid pulmonary fibrosis stage, whereas the second fast fibrosis stage occurred on days 14-21. Th2 cell polarization, Smad4 and Smad7 should be the crucial molecular mechanism of ALI-induced rapid fibrosis. The investigation was not only performed to establish a new rapid pulmonary fibrosis model, but also to provide the elicitation for mechanism of ALI changed into the rapid pulmonary fibrosis.

    Search related documents:
    Co phrase search for related documents