Selected article for: "characteristic curve and good performance model"

Author: Zhou, Xianlong; Wang, Zhichao; Li, Shaoping; Liu, Tanghai; Wang, Xiaolin; Xia, Jian; Zhao, Yan
Title: Machine Learning-Based Decision Model to Distinguish Between COVID-19 and Influenza: A Retrospective, Two-Centered, Diagnostic Study
  • Cord-id: mqlg05l6
  • Document date: 2021_2_15
  • ID: mqlg05l6
    Snippet: BACKGROUND: Considering the current situation of the novel coronavirus disease (COVID-19) epidemic control, it is highly likely that COVID-19 and influenza may coincide during the approaching winter season. However, there is no available tool that can rapidly and precisely distinguish between these two diseases in the absence of laboratory evidence of specific pathogens. METHODS: Laboratory-confirmed COVID-19 and influenza patients between December 1, 2019 and February 29, 2020, from Zhongnan Ho
    Document: BACKGROUND: Considering the current situation of the novel coronavirus disease (COVID-19) epidemic control, it is highly likely that COVID-19 and influenza may coincide during the approaching winter season. However, there is no available tool that can rapidly and precisely distinguish between these two diseases in the absence of laboratory evidence of specific pathogens. METHODS: Laboratory-confirmed COVID-19 and influenza patients between December 1, 2019 and February 29, 2020, from Zhongnan Hospital of Wuhan University (ZHWU) and Wuhan No.1 Hospital (WNH) located in Wuhan, China, were included for analysis. A machine learning-based decision model was developed using the XGBoost algorithms. RESULTS: Data of 357 COVID-19 and 1893 influenza patients from ZHWU were split into a training and a testing set in the ratio 7:3, while the dataset from WNH (308 COVID-19 and 312 influenza patients) was preserved for an external test. Model-based decision tree selected age, serum high-sensitivity C-reactive protein and circulating monocytes as meaningful indicators for classifying COVID-19 and influenza cases. In the training, testing and external sets, the model achieved good performance in identifying COVID-19 from influenza cases with a corresponding area under the receiver operating characteristic curve (AUC) of 0.94 (95% CI 0.93, 0.96), 0.93 (95% CI 0.90, 0.96), and 0.84 (95% CI: 0.81, 0.87), respectively. CONCLUSION: Machine learning provides a tool that can rapidly and accurately distinguish between COVID-19 and influenza cases. This finding would be particularly useful in regions with massive co-occurrences of COVID-19 and influenza cases while limited resources for laboratory testing of specific pathogens.

    Search related documents:
    Co phrase search for related documents
    • accurate rapid and acid detection kit: 1
    • accurate rapid and additional information: 1, 2
    • accurate rapid and logistic binary: 1
    • accurate rapid and logistic regression: 1, 2, 3, 4
    • accurate rapid and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
    • accurate rapid and machine learning model: 1, 2, 3
    • accurately rapidly and machine learning: 1, 2
    • additional information and logistic binary: 1, 2
    • additional information and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
    • additional information and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    • additional information and machine learning model: 1, 2
    • logistic binary and machine learning: 1, 2, 3, 4, 5
    • logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25