Author: Selvam, A. George Maria Alzabut Jehad Vianny D. Abraham Jacintha Mary Yousef Fatma Bozkurt; George Maria Selvam, A.; Alzabut, J.; Abraham Vianny, D.; Jacintha, M.; Yousef, F. B.
Title: Modeling and stability analysis of the spread of novel coronavirus disease COVID-19 Cord-id: mupgxn23 Document date: 2021_1_1
ID: mupgxn23
Snippet: Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the bas
Document: Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings. [ABSTRACT FROM AUTHOR] Copyright of International Journal of Biomathematics is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Search related documents:
Co phrase search for related documents- acute respiratory syndrome and local stability: 1
Co phrase search for related documents, hyperlinks ordered by date