Selected article for: "abdominal wall and absorbable nonabsorbable"

Author: Meintjes, Jennifer; Yan, Sheng; Zhou, Lin; Zheng, Shusen; Zheng, Minghao
Title: Synthetic, biological and composite scaffolds for abdominal wall reconstruction.
  • Cord-id: pz4kph62
  • Document date: 2011_1_1
  • ID: pz4kph62
    Snippet: The reconstruction of abdominal wall defects remains a huge surgical challenge. Tension-free repair is proven to be superior to suture repair in abdominal wall reconstruction. Scaffolds are essential for tension-free repair. They are used to bridge a defect or reinforce the abdominal wall. A huge variety of scaffolds are now commercially available. Most of the synthetic scaffolds are composed of polypropylene. They provide strong tissue reinforcement, but cause a foreign body reaction, which can
    Document: The reconstruction of abdominal wall defects remains a huge surgical challenge. Tension-free repair is proven to be superior to suture repair in abdominal wall reconstruction. Scaffolds are essential for tension-free repair. They are used to bridge a defect or reinforce the abdominal wall. A huge variety of scaffolds are now commercially available. Most of the synthetic scaffolds are composed of polypropylene. They provide strong tissue reinforcement, but cause a foreign body reaction, which can result in serious complications. Absorbable synthetic scaffolds, such as Dexon™ (polyglycolic acid) and Vicryl™ (polyglactin 910), are not suitable for abdominal wall reconstruction as they usually require subsequent surgeries to repair recurrent hernias. Composite scaffolds combine the strength of nonabsorbable synthetic scaffolds with the antiadhesive properties of the absorbable scaffold, but require long-term follow-up. Biological scaffolds, such as Permacol™, Surgisis(®) and Alloderm(®), are derived from acellular mammalian tissues. Non-cross-linked biological scaffolds show excellent biocompatibility and degrade slowly over time. However, remnant DNA has been found in several products and the degradation leads to recurrence. Randomized controlled trials with long-term follow-up studies are lacking for all of the available scaffolds, particularly those derived from animal tissue. This article provides an overview of the different types of scaffolds available, and presents the key clinical studies of the commercially available synthetic, composite and biological scaffolds for abdominal wall reconstruction.

    Search related documents:
    Co phrase search for related documents
    • abdominal wall and long term follow study: 1
    • abdominal wall defect and long term follow: 1, 2
    • abdominal wall defect reconstruction and long term follow: 1
    • abdominal wall reconstruction and long term follow: 1, 2