Selected article for: "chest CT image and CT scan"

Author: Jaiswal, Aayush; Gianchandani, Neha; Singh, Dilbag; Kumar, Vijay; Kaur, Manjit
Title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning.
  • Cord-id: qgl2u707
  • Document date: 2020_7_3
  • ID: qgl2u707
    Snippet: Deep learning models are widely used in the automatic analysis of radiological images. These techniques can train the weights of networks on large datasets as well as fine tuning the weights of pre-trained networks on small datasets. Due to the small COVID-19 dataset available, the pre-trained neural networks can be used for diagnosis of coronavirus. However, these techniques applied on chest CT image is very limited till now. Hence, the main aim of this paper to use the pre-trained deep learnin
    Document: Deep learning models are widely used in the automatic analysis of radiological images. These techniques can train the weights of networks on large datasets as well as fine tuning the weights of pre-trained networks on small datasets. Due to the small COVID-19 dataset available, the pre-trained neural networks can be used for diagnosis of coronavirus. However, these techniques applied on chest CT image is very limited till now. Hence, the main aim of this paper to use the pre-trained deep learning architectures as an automated tool to detection and diagnosis of COVID-19 in chest CT. A DenseNet201 based deep transfer learning (DTL) is proposed to classify the patients as COVID infected or not i.e. COVID-19 (+) or COVID (-). The proposed model is utilized to extract features by using its own learned weights on the ImageNet dataset along with a convolutional neural structure. Extensive experiments are performed to evaluate the performance of the propose DTL model on COVID-19 chest CT scan images. Comparative analyses reveal that the proposed DTL based COVID-19 classification model outperforms the competitive approaches.Communicated by Ramaswamy H. Sarma.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date