Author: Shankar, K.; Perumal, Eswaran
Title: A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images Cord-id: ndmpgzg7 Document date: 2020_11_12
ID: ndmpgzg7
Snippet: COVID-19 pandemic is increasing in an exponential rate, with restricted accessibility of rapid test kits. So, the design and implementation of COVID-19 testing kits remain an open research problem. Several findings attained using radio-imaging approaches recommend that the images comprise important data related to coronaviruses. The application of recently developed artificial intelligence (AI) techniques, integrated with radiological imaging, is helpful in the precise diagnosis and classificati
Document: COVID-19 pandemic is increasing in an exponential rate, with restricted accessibility of rapid test kits. So, the design and implementation of COVID-19 testing kits remain an open research problem. Several findings attained using radio-imaging approaches recommend that the images comprise important data related to coronaviruses. The application of recently developed artificial intelligence (AI) techniques, integrated with radiological imaging, is helpful in the precise diagnosis and classification of the disease. In this view, the current research paper presents a novel fusion model hand-crafted with deep learning features called FM-HCF-DLF model for diagnosis and classification of COVID-19. The proposed FM-HCF-DLF model comprises three major processes, namely Gaussian filtering-based preprocessing, FM for feature extraction and classification. FM model incorporates the fusion of handcrafted features with the help of local binary patterns (LBP) and deep learning (DL) features and it also utilizes convolutional neural network (CNN)-based Inception v3 technique. To further improve the performance of Inception v3 model, the learning rate scheduler using Adam optimizer is applied. At last, multilayer perceptron (MLP) is employed to carry out the classification process. The proposed FM-HCF-DLF model was experimentally validated using chest X-ray dataset. The experimental outcomes inferred that the proposed model yielded superior performance with maximum sensitivity of 93.61%, specificity of 94.56%, precision of 94.85%, accuracy of 94.08%, F score of 93.2% and kappa value of 93.5%.
Search related documents:
Co phrase search for related documents- accuracy precision and activation function: 1, 2, 3
- accuracy precision and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy precision and adam optimizer: 1, 2, 3
- accuracy precision specificity and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7
- accurate label and acute respiratory syndrome: 1
- activation function and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- activation function and adam optimizer: 1, 2, 3
- acute respiratory syndrome and adam optimizer: 1
- acute respiratory syndrome and adaptive anfis neuro fuzzy inference system: 1, 2
- acute respiratory syndrome and adaptive estimation: 1
- adam optimizer and adaptive estimation: 1
- adam optimizer and adaptive moment: 1
Co phrase search for related documents, hyperlinks ordered by date