Author: Hossain, M.; Faisal, N. H.
Title: Modeling aerosol cloud aerodynamics during human coughing, talking, and breathing actions Cord-id: nkuv44t4 Document date: 2021_1_1
ID: nkuv44t4
Snippet: In this paper, we investigate the aerosol cloud flow physics during three respiratory actions by humans (such as coughing, talking, and breathing). With given variables (i.e., velocity, duration, particle size and number of particles, and ambient conditions), the standoff safe distance during coughing, talking, and breathing should be the distance where virus-laden droplets and aerosols do not have significant transmission to another person. However, at a critical distance, the aerosol cloud flu
Document: In this paper, we investigate the aerosol cloud flow physics during three respiratory actions by humans (such as coughing, talking, and breathing). With given variables (i.e., velocity, duration, particle size and number of particles, and ambient conditions), the standoff safe distance during coughing, talking, and breathing should be the distance where virus-laden droplets and aerosols do not have significant transmission to another person. However, at a critical distance, the aerosol cloud flux can still be extremely high, which can immediately raise the transmission in a localized area to another person during a static condition. In this study, computational fluid dynamics analysis of selective respiratory actions has been carried out to investigate the effect of the standoff distance and assess the importance of social distancing in indoor places. The prediction of the aerosol transport due to flow generated from coughing, talking, and breathing was obtained by applying the Eulerian-Lagrangian approach. From the simulation results, it can be concluded that the aerosols released due to continuous talking travel a similar distance to that released due to sudden coughing. On the other hand, aerosols exhaled from breathing do not travel a long distance but float in air for a long time.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date