Author: Siting, Zhao; Kishan, Kishan; Patanaik, Amiya
Title: 271 Sleep staging performance of a signal-agnostic cloud-based real-time sleep analytics platform Cord-id: o3xnk5v2 Document date: 2021_5_3
ID: o3xnk5v2
Snippet: INTRODUCTION: The coronavirus pandemic has brought unprecedented changes to the health care system, including sleep medicine. Remote monitoring and telemedicine played a significant role in this shift. We anticipate these changes to continue in the future with internet-connected wearables (ICWs) playing an important role in measuring and managing sleep remotely. As these ICWs measures a small subset of signals traditionally measured during polysomnography (PSG), manual sleep staging becomes non-
Document: INTRODUCTION: The coronavirus pandemic has brought unprecedented changes to the health care system, including sleep medicine. Remote monitoring and telemedicine played a significant role in this shift. We anticipate these changes to continue in the future with internet-connected wearables (ICWs) playing an important role in measuring and managing sleep remotely. As these ICWs measures a small subset of signals traditionally measured during polysomnography (PSG), manual sleep staging becomes non-trivial and sometimes impossible. The ability to do accurate and reliable automatic sleep staging using different modalities of physiological signals remotely is becoming ever more important. METHODS: The current work seeks to quantify the sleep staging performance of Z3Score-Neo (https://z3score.com, Neurobit Technologies, Singapore), a signal agnostic, cloud-based real-time sleep analytics platform. We tested its staging performance on the CINC open dataset with N=994 subjects using various combinations of signals including Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), and Instantaneous Heart Rate (IHR) derived from Electrocardiogram (ECG). The staging was compared against manual scoring based on PSG. For IHR based staging, N1 and N2 were combined. RESULTS: We achieved substantial agreement (all Cohen’s Kappa > 0.7) between automatic and manual staging using various combinations of EEG, EOG and EMG channels with accuracies varying between 81.76% (two central EEGs, one EOG, one EMG), 79.31% (EEG+EOG), 78.73% (EEG only) and 78.09% (one EOG). We achieved moderate agreement (accuracy: 72.8% κ=0.54) with IHR derived from ECG. CONCLUSION: Our results demonstrated the accuracy of a cloud-based sleep analytics platform on an open dataset, using various combinations of ecologically valid physiological signals. EOG and EMG channels can be easily self-administered using sticker-based electrodes and can be added to existing home sleep apnea test (HSAT) kits significantly improving their utility. ICWs are already capable of accurately measuring EEG/EOG (Muse, InteraXon Inc., Toronto, Canada; Dreem band, Dreem, USA) and IHR derived from ECG (Movesense, Suunto, Finland) or photoplethysmogram (Oura Ring, Oura Health Oy, Finland) or through non-contact ballistocardiogram/radio-based measurements (Dozee, Turtle Shell Technologies, India; Sleepiz, Sleepiz AG, Switzerland). Therefore, a well-validated cloud-based staging platform solves a major technological hurdle towards the proliferation of remote monitoring and telehealth in sleep medicine. Support (if any):
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date