Author: Hackl, Klaus
                    Title: Modeling the COVID-19 pandemic - parameter identification and reliability of predictions  Cord-id: osez25uj  Document date: 2020_4_11
                    ID: osez25uj
                    
                    Snippet: In this paper, we try to identify the parameters for two elementary epidemic models, the so-called SI- and SIS-models, via non-linear regression using data of the COVID-19 pandemic. This is done based on the data for the number of daily infections. Studying the history of predictions made, we attempt to estimate their reliability concerning the future course of the epidemic. We validate this procedure using data for the case numbers in China and South Korea. Then we apply it in order to find pre
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: In this paper, we try to identify the parameters for two elementary epidemic models, the so-called SI- and SIS-models, via non-linear regression using data of the COVID-19 pandemic. This is done based on the data for the number of daily infections. Studying the history of predictions made, we attempt to estimate their reliability concerning the future course of the epidemic. We validate this procedure using data for the case numbers in China and South Korea. Then we apply it in order to find predictions for Germany, Italy and the United States. The results are encouraging, but no final judgment on the validity of the procedure can yet be made.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date