Author: Bezzan, Vitor P.; Rocco, Cleber D.
Title: Predicting special care during the COVID-19 pandemic: a machine learning approach Cord-id: spcw42bs Document date: 2021_8_14
ID: spcw42bs
Snippet: More than ever, COVID-19 is putting pressure on health systems worldwide, especially in Brazil. In this study, we propose a method based on statistics and machine learning that uses blood lab exam data from patients to predict whether patients will require special care (hospitalization in regular or special-care units). We also predict the number of days the patients will stay under such care. The two-step procedure developed uses Bayesian Optimisation to select the best model among several cand
Document: More than ever, COVID-19 is putting pressure on health systems worldwide, especially in Brazil. In this study, we propose a method based on statistics and machine learning that uses blood lab exam data from patients to predict whether patients will require special care (hospitalization in regular or special-care units). We also predict the number of days the patients will stay under such care. The two-step procedure developed uses Bayesian Optimisation to select the best model among several candidates. This leads us to final models that achieve 0.94 area under ROC curve performance for the first target and 1.87 root mean squared error for the second target (which is a 77% improvement over the mean baseline)—making our model ready to be deployed as a decision system that could be available for everyone interested. The analytical approach can be used in other diseases and can help to plan hospital resources in other contexts.
Search related documents:
Co phrase search for related documents- absolute shrinkage and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54
- absolute shrinkage and long lstm short term memory: 1
- absolute shrinkage and lstm short term memory: 1
- absolute shrinkage and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- accuracy attain and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date