Author: Desuky, Abeer S.; Hussain, Sadiq
Title: An Improved Hybrid Approach for Handling Class Imbalance Problem Cord-id: t79esoa4 Document date: 2021_1_28
ID: t79esoa4
Snippet: Class imbalance issue that presents in many real-world datasets exhibit favouritism toward the majority class and showcases poor performance for the minority class. Such misclassifications may incur dubious outcome in case of disease diagnosis and other critical applications. Hence, it is a hot topic for the researchers to tackle the class imbalance issue. We present a novel hybrid approach for handling such datasets. We utilize simulated annealing algorithm for undersampling and apply support v
Document: Class imbalance issue that presents in many real-world datasets exhibit favouritism toward the majority class and showcases poor performance for the minority class. Such misclassifications may incur dubious outcome in case of disease diagnosis and other critical applications. Hence, it is a hot topic for the researchers to tackle the class imbalance issue. We present a novel hybrid approach for handling such datasets. We utilize simulated annealing algorithm for undersampling and apply support vector machine, decision tree, k-nearest neighbor and discriminant analysis for the classification task. We validate our technique in 51 real-world datasets and compare it with other recent works. Our technique yields better efficacy than the existing techniques and hence it can be applied in imbalance datasets to mitigate the misclassification.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date