Author: Li, Zhe; Hu, Dehua
Title: Forecast of the COVID-19 Epidemic Based on RF-BOA-LightGBM Cord-id: qg4joei1 Document date: 2021_9_6
ID: qg4joei1
Snippet: In this paper, we utilize the Internet big data tool, namely Baidu Index, to predict the development trend of the new coronavirus pneumonia epidemic to obtain further data. By selecting appropriate keywords, we can collect the data of COVID-19 cases in China between 1 January 2020 and 1 April 2020. After preprocessing the data set, the optimal sub-data set can be obtained by using random forest feature selection method. The optimization results of the seven hyperparameters of the LightGBM model
Document: In this paper, we utilize the Internet big data tool, namely Baidu Index, to predict the development trend of the new coronavirus pneumonia epidemic to obtain further data. By selecting appropriate keywords, we can collect the data of COVID-19 cases in China between 1 January 2020 and 1 April 2020. After preprocessing the data set, the optimal sub-data set can be obtained by using random forest feature selection method. The optimization results of the seven hyperparameters of the LightGBM model by grid search, random search and Bayesian optimization algorithms are compared. The experimental results show that applying the data set obtained from the Baidu Index to the Bayesian-optimized LightGBM model can better predict the growth of the number of patients with new coronary pneumonias, and also help people to make accurate judgments to the development trend of the new coronary pneumonia.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date