Author: Bao, Jingyue; Wang, Qinghua; Li, Lin; Liu, Chunju; Zhang, Zhicheng; Li, Jinming; Wang, Shujuan; Wu, Xiaodong; Wang, Zhiliang
                    Title: Evolutionary dynamics of recent peste des petits ruminants virus epidemic in China during 2013–2014  Cord-id: t47i8hui  Document date: 2017_7_19
                    ID: t47i8hui
                    
                    Snippet: Peste des petits ruminants virus (PPRV) causes a highly contagious disease, peste des petits ruminants (PPR), in sheep and goats which has been considered as a serious threat to the local economy in Africa and Asia. However, the in-depth evolutionary dynamics of PPRV during an epidemic is not well understood. We conducted phylogenetic analysis on genomic sequences of 25 PPRV strains from China 2013–2014 outbreaks. All these strains clustered into a novel clade in lineage 4. An evolutionary rat
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Peste des petits ruminants virus (PPRV) causes a highly contagious disease, peste des petits ruminants (PPR), in sheep and goats which has been considered as a serious threat to the local economy in Africa and Asia. However, the in-depth evolutionary dynamics of PPRV during an epidemic is not well understood. We conducted phylogenetic analysis on genomic sequences of 25 PPRV strains from China 2013–2014 outbreaks. All these strains clustered into a novel clade in lineage 4. An evolutionary rate of 2.61 × 10(−6) nucleotide substitutions per site per day was estimated, dating the most recent common ancestor of PPRV China 2013–2014 strains to early August 2013. Transmission network analysis revealed that all the virus sequences could be grouped into five clusters of infection, suggesting long-distance animal transmission play an important role in the spread of PPRV in China. These results expanded our knowledge for PPRV evolution to achieve effective control measures.
 
  Search related documents: 
                                Co phrase  search for related documents- accession number and lymph node: 1, 2
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date