Selected article for: "AUC curve area and vector machine"

Author: Alves, Allan F. F.; Souza, Sérgio A.; Ruiz, Raul L.; Reis, Tarcísio A.; Ximenes, Agláia M. G.; Hasimoto, Erica N.; Pires, Rodrigo L.; Miranda, José Ricardo A.; Pina, Diana R.
Title: Combining machine learning and texture analysis to differentiate mediastinal lymph nodes in lung cancer patients
  • Cord-id: lz9o3uul
  • Document date: 2021_3_17
  • ID: lz9o3uul
    Snippet: Evaluate whether texture analysis associated with machine learning approaches could differentiate between malignant and benign lymph nodes. A total 18 patients with lung cancer were selected, with 39 lymph nodes, being 15 malignant and 24 benign. Retrospective computed tomography scans were utilized both with and without contrast medium. The great differential of this work was the use of 15 textures from mediastinal lymph nodes, with five different physicians as operators. First and second order
    Document: Evaluate whether texture analysis associated with machine learning approaches could differentiate between malignant and benign lymph nodes. A total 18 patients with lung cancer were selected, with 39 lymph nodes, being 15 malignant and 24 benign. Retrospective computed tomography scans were utilized both with and without contrast medium. The great differential of this work was the use of 15 textures from mediastinal lymph nodes, with five different physicians as operators. First and second order statistical textures such as gray level run length and co-occurrence matrix were extracted and applied to three different machine learning classifiers. The best machine learning classifier demonstrated a variability of less than 5% among operators. The support vector machine (SVM) classifier presented 95% of the area under the ROC curve (AUC) and 89% of sensitivity for sequences without contrast medium. SVM classifier presented 93% of AUC and 86% of sensitivity for sequences with contrast medium. Texture analysis and machine learning may be helpful in the differentiation between malign and benign lymph nodes. This study can aid the physician in diagnosis and staging of lymph nodes and potentially reduce the number of invasive analysis to histopathological confirmation.

    Search related documents:
    Co phrase search for related documents
    • location presence and logistic regression: 1, 2
    • location presence and lymph node: 1, 2
    • logistic regression and lung cancer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • logistic regression and lung cancer patient: 1, 2
    • logistic regression and lung cancer staging: 1
    • logistic regression and lung nodule: 1, 2
    • logistic regression and lymph node: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21