Selected article for: "activity level and low density"

Author: Ding, Yu; Feng, Yue; Zou, Yutian; Wang, Fen; Liu, Huihui; Liu, Chunfeng; Zhang, Yanlin
Title: [Gly14]-humanin restores cathepsin D function via FPRL1 and promotes autophagic degradation of Ox-LDL in HUVECs.
  • Cord-id: qsm3lduw
  • Document date: 2020_7_25
  • ID: qsm3lduw
    Snippet: BACKGROUND AND AIM Abnormal aggregation of oxidized low-density lipoprotein (Ox-LDL) in vascular endothelial cells (VECs) is one of the major pathological changes in atherosclerotic lesions. Our research aimed to assess the mechanism of humanin (HN) in promoting autophagic degradation of Ox-LDL in HUVECs. METHODS AND RESULTS Flow cytometry and lipid quantitation results showed that Ox-LDL caused lipid and cholesterol accumulation in HUVECs. Western blot results showed that Ox-LDL increased the e
    Document: BACKGROUND AND AIM Abnormal aggregation of oxidized low-density lipoprotein (Ox-LDL) in vascular endothelial cells (VECs) is one of the major pathological changes in atherosclerotic lesions. Our research aimed to assess the mechanism of humanin (HN) in promoting autophagic degradation of Ox-LDL in HUVECs. METHODS AND RESULTS Flow cytometry and lipid quantitation results showed that Ox-LDL caused lipid and cholesterol accumulation in HUVECs. Western blot results showed that Ox-LDL increased the expression of autophagy-related proteins P62 and LC3-II in a concentration-dependent manner. The cathepsin D activity assay showed that Ox-LDL inhibited the function of cathepsin D. HNG pretreatment reduced lipid and cholesterol aggregation in HUVECs induced by Ox-LDL, increased LC3-II protein level, decreased P62 protein content, and reversed Ox-LDL-induced cathepsin D functional impairment. Inhibition of the FPRL1 pathway by FPRL1 siRNA or the FPRL1-specific inhibitor Boc-MLF blocked all HNG's protective effects. These results indicate that HNG could restore cathepsin D activity and protein level in HUVECs to repair lysosomal functional damage induced by Ox-LDL, further repairing Ox-LDL-induced autophagic damage in HUVECs. CONCLUSION HNG restores the activity of Ox-LDL-induced damaged lysosomal enzyme cathepsin D through its membrane protein receptor FPRL1 to promote autophagic degradation of Ox-LDL in HUVECs.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date