Selected article for: "acid glycine and amino acid glycine"

Author: Lee, Joun; Kim, Sanggon; Mubeen, Syed; Mulchandani, Ashok; Chen, Wilfred; Choa, Yongho; Myung, Nosang V
Title: Synthesis of gold nanostructures using glycine as the reducing agent.
  • Cord-id: pp8ape1a
  • Document date: 2020_8_18
  • ID: pp8ape1a
    Snippet: Biological synthesis of gold nanostructures could potentially offer an environmentally friendly alternative to traditional chemical synthetic methods. During the last decades, various biomolecules, including amino acids, have been successfully used as reducing and capping agents to synthesize multi-shaped gold nanostructures. A grand challenge in this field is to increase our ability to control the size and shape of gold nanostructures formed precisely by systematic synthetic approaches based on
    Document: Biological synthesis of gold nanostructures could potentially offer an environmentally friendly alternative to traditional chemical synthetic methods. During the last decades, various biomolecules, including amino acids, have been successfully used as reducing and capping agents to synthesize multi-shaped gold nanostructures. A grand challenge in this field is to increase our ability to control the size and shape of gold nanostructures formed precisely by systematic synthetic approaches based on the understanding of the mechanism for structural determination. In this study, using glycine as the model amino acid and chloroaurate (AuCl4 -) ions as the precursor solution, we report the finding that the shape of the gold nanostructures synthesized showed a strong correlation with the speciation of gold complexes determined by the pH, precursor concentration and chloride concentration of the solvent system. The gold chloro-hydroxy speciation [AuClx(OH)4-x]- (with x = 0-4) influenced the shape of the gold nanostructures formed, with gold nanoplatelets, nanotriangles, nanokites and nanoribbons observed at x = 4, 3, 2 and 1, respectively, and spherical nanoparticles observed at x = 0. Glycine was found to play a role as a reducing agent, but no significant effect on the morphology was observed, indicating the dominance of gold chloro-hydroxy speciation in the structural formation. These results collectively provide synthetic considerations to systematically synthesize non-spherical to spherical biosynthesized gold nanostructures by controlling the speciation of [AuClx(OH)4-x]-.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date