Author: Fu, Y.; Zhang, C.; Chen, Y.; Gu, F.; Baležentis, T.; Streimikiene, D.
Title: Ordered weighted logarithmic averaging distance-based pattern recognition for the recommendation of traditional Chinese medicine against COVID-19 under a complex environment Cord-id: mi5tgz99 Document date: 2021_1_1
ID: mi5tgz99
Snippet: Purpose: The proposed DHHFLOWLAD is used to design a recommendation system, which aims to provide the most appropriate treatment to the patient under a double hierarchy hesitant fuzzy linguistic environment. Design/methodology/approach: Based on the ordered weighted distance measure and logarithmic aggregation, we first propose a double hierarchy hesitant fuzzy linguistic ordered weighted logarithmic averaging distance (DHHFLOWLAD) measure in this paper. Findings: A case study is presented to il
Document: Purpose: The proposed DHHFLOWLAD is used to design a recommendation system, which aims to provide the most appropriate treatment to the patient under a double hierarchy hesitant fuzzy linguistic environment. Design/methodology/approach: Based on the ordered weighted distance measure and logarithmic aggregation, we first propose a double hierarchy hesitant fuzzy linguistic ordered weighted logarithmic averaging distance (DHHFLOWLAD) measure in this paper. Findings: A case study is presented to illustrate the practicability and efficiency of the proposed approach. The results show that the recommendation system can prioritize TCM treatment plans effectively. Moreover, it can cope with pattern recognition problems efficiently under uncertain information environments. Originality/value: An expert system is proposed to combat COVID-19 that is an emerging infectious disease causing disruptions globally. Traditional Chinese medicine (TCM) has been proved to relieve symptoms, improve the cure rate, and reduce the death rate in clinical cases of COVID-19. © 2021, Emerald Publishing Limited.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date