Author: Wollenstein-Betech, Salomón; Silva, Amanda A. B.; Fleck, Julia L.; Cassandras, Christos G.; Paschalidis, Ioannis Ch.
Title: Physiological and socioeconomic characteristics predict COVID-19 mortality and resource utilization in Brazil Cord-id: pz0uqsty Document date: 2020_10_14
ID: pz0uqsty
Snippet: BACKGROUND: Given the severity and scope of the current COVID-19 pandemic, it is critical to determine predictive features of COVID-19 mortality and medical resource usage to effectively inform health, risk-based physical distancing, and work accommodation policies. Non-clinical sociodemographic features are important explanatory variables of COVID-19 outcomes, revealing existing disparities in large health care systems. METHODS AND FINDINGS: We use nation-wide multicenter data of COVID-19 patie
Document: BACKGROUND: Given the severity and scope of the current COVID-19 pandemic, it is critical to determine predictive features of COVID-19 mortality and medical resource usage to effectively inform health, risk-based physical distancing, and work accommodation policies. Non-clinical sociodemographic features are important explanatory variables of COVID-19 outcomes, revealing existing disparities in large health care systems. METHODS AND FINDINGS: We use nation-wide multicenter data of COVID-19 patients in Brazil to predict mortality and ventilator usage. The dataset contains hospitalized patients who tested positive for COVID-19 and had either recovered or were deceased between March 1 and June 30, 2020. A total of 113,214 patients with 50,387 deceased, were included. Both interpretable (sparse versions of Logistic Regression and Support Vector Machines) and state-of-the-art non-interpretable (Gradient Boosted Decision Trees and Random Forest) classification methods are employed. Death from COVID-19 was strongly associated with demographics, socioeconomic factors, and comorbidities. Variables highly predictive of mortality included geographic location of the hospital (OR = 2.2 for Northeast region, OR = 2.1 for North region); renal (OR = 2.0) and liver (OR = 1.7) chronic disease; immunosuppression (OR = 1.7); obesity (OR = 1.7); neurological (OR = 1.6), cardiovascular (OR = 1.5), and hematologic (OR = 1.2) disease; diabetes (OR = 1.4); chronic pneumopathy (OR = 1.4); immunosuppression (OR = 1.3); respiratory symptoms, ranging from respiratory discomfort (OR = 1.4) and dyspnea (OR = 1.3) to oxygen saturation less than 95% (OR = 1.7); hospitalization in a public hospital (OR = 1.2); and self-reported patient illiteracy (OR = 1.1). Validation accuracies (AUC) for predicting mortality and ventilation need reach 79% and 70%, respectively, when using only pre-admission variables. Models that use post-admission disease progression information reach accuracies (AUC) of 86% and 87% for predicting mortality and ventilation use, respectively. CONCLUSIONS: The results highlight the predictive power of socioeconomic information in assessing COVID-19 mortality and medical resource allocation, and shed light on existing disparities in the Brazilian health care system during the COVID-19 pandemic.
Search related documents:
Co phrase search for related documents- access care and acute ards respiratory distress syndrome: 1, 2, 3
- access care and additional report: 1, 2
- access care and local context: 1, 2, 3, 4
- access care and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- access care and loss function: 1
- access care and louisiana state: 1
- acute ards respiratory distress syndrome and additional report: 1
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and loss function: 1, 2, 3, 4, 5, 6, 7, 8
- additional report and logistic regression: 1, 2
- local context and logistic regression: 1, 2, 3, 4
- logistic regression and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Co phrase search for related documents, hyperlinks ordered by date