Selected article for: "computational modeling and machine learning"

Author: Yang, Wuyue; Peng, Liangrong; Zhu, Yi; Hong, Liu
Title: When Machine Learning Meets Multiscale Modeling in Chemical Reactions
  • Cord-id: msdycum2
  • Document date: 2020_6_1
  • ID: msdycum2
    Snippet: Due to the intrinsic complexity and nonlinearity of chemical reactions, direct applications of traditional machine learning algorithms may face with many difficulties. In this study, through two concrete examples with biological background, we illustrate how the key ideas of multiscale modeling can help to reduce the computational cost of machine learning a lot, as well as how machine learning algorithms perform model reduction automatically in a time-scale separated system. Our study highlights
    Document: Due to the intrinsic complexity and nonlinearity of chemical reactions, direct applications of traditional machine learning algorithms may face with many difficulties. In this study, through two concrete examples with biological background, we illustrate how the key ideas of multiscale modeling can help to reduce the computational cost of machine learning a lot, as well as how machine learning algorithms perform model reduction automatically in a time-scale separated system. Our study highlights the necessity and effectiveness of an integration of machine learning algorithms and multiscale modeling during the study of chemical reactions.

    Search related documents:
    Co phrase search for related documents
    • loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
    • loss function and machine learning approach: 1, 2, 3
    • loss function mean and machine learning: 1