Author: Bradley, Patrick; Frost, Freddy; Tharmaratnam, Kukatharmini; Wootton, Daniel G
Title: Utility of established prognostic scores in COVID-19 hospital admissions: multicentre prospective evaluation of CURB-65, NEWS2 and qSOFA Cord-id: uect4j3e Document date: 2020_12_7
ID: uect4j3e
Snippet: INTRODUCTION: The COVID-19 pandemic is ongoing, yet, due to the lack of a COVID-19-specific tool, clinicians must use pre-existing illness severity scores for initial prognostication. However, the validity of such scores in COVID-19 is unknown. METHODS: The North West Collaborative Organisation for Respiratory Research performed a multicentre prospective evaluation of adult patients admitted to the hospital with confirmed COVID-19 during a 2-week period in April 2020. Clinical variables measured
Document: INTRODUCTION: The COVID-19 pandemic is ongoing, yet, due to the lack of a COVID-19-specific tool, clinicians must use pre-existing illness severity scores for initial prognostication. However, the validity of such scores in COVID-19 is unknown. METHODS: The North West Collaborative Organisation for Respiratory Research performed a multicentre prospective evaluation of adult patients admitted to the hospital with confirmed COVID-19 during a 2-week period in April 2020. Clinical variables measured as part of usual care at presentation to the hospital were recorded, including the Confusion, Urea, Respiratory Rate, Blood Pressure and Age Above or Below 65 Years (CURB-65), National Early Warning Score 2 (NEWS2) and Quick Sequential (Sepsis-Related) Organ Failure Assessment (qSOFA) scores. The primary outcome of interest was 30-day mortality. RESULTS: Data were collected for 830 people with COVID-19 admitted across seven hospitals. By 30 days, a total of 300 (36.1%) had died and 142 (17.1%) had been in the intensive care unit. All scores underestimated mortality compared with pre-COVID-19 cohorts, and overall prognostic performance was generally poor. Among the ‘low-risk’ categories (CURB-65 score<2, NEWS2<5 and qSOFA score<2), 30-day mortality was 16.7%, 32.9% and 21.4%, respectively. NEWS2≥5 had a negative predictive value of 98% for early mortality. Multivariable logistic regression identified features of respiratory compromise rather than circulatory collapse as most relevant prognostic variables. CONCLUSION: In the setting of COVID-19, existing prognostic scores underestimated risk. The design of new prognostic tools should focus on features of respiratory compromise rather than circulatory collapse. We provide a baseline set of variables which are relevant to COVID-19 outcomes and may be used as a basis for developing a bespoke COVID-19 prognostication tool.
Search related documents:
Co phrase search for related documents- absence presence and accurate simple: 1, 2
- absence presence and acute hospital: 1, 2, 3, 4, 5, 6, 7
- absence presence and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- absence presence and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
- absence presence and logistic regression model: 1, 2, 3, 4, 5, 6, 7
- absence presence and low mortality rate: 1
- accurate prediction and acute hospital: 1, 2
- accurate prediction and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- accurate prediction and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- accurate prediction and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9
- accurate simple and acute infectious disease: 1
- accurate simple and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- accurate simple and logistic regression: 1, 2, 3
- accurate simple and logistic regression model: 1, 2
Co phrase search for related documents, hyperlinks ordered by date