Author: Yu, Xiujin; Liu, Shengfu; Zhang, Hui
Title: Chinese Language Feature Analysis Based on Multilayer Self-Organizing Neural Network and Data Mining Techniques Cord-id: nez3x1qg Document date: 2021_10_14
ID: nez3x1qg
Snippet: As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. However, they are hardly applied to Chinese language feature analysis. In order to accurately analyze the characteristics of Chinese language, this paper uses the multilayer self-organizing neural network and the corresponding data mi
Document: As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. However, they are hardly applied to Chinese language feature analysis. In order to accurately analyze the characteristics of Chinese language, this paper uses the multilayer self-organizing neural network and the corresponding data mining technology for feature recognition and then compared it with other different types of neural network algorithms. The results show that the multilayer self-organizing neural network can make the accuracy, recall, and F1 score of feature recognition reach 68.69%, 80.21%, and 70.19%, respectively, when there are many samples. Under the influence of strong noise, it keeps high efficiency of feature analysis. This shows that the multilayer self-organizing neural network has superior performance and can provide strong support for Chinese language feature analysis.
Search related documents:
Co phrase search for related documents- accuracy rate and activation function: 1
Co phrase search for related documents, hyperlinks ordered by date