Author: Dairi, Abdelkader; Harrou, Fouzi; Zeroual, Abdelhafid; Hittawe, Mohamad Mazen; Sun, Ying
Title: Comparative study of machine learning methods for COVID-19 transmission forecasting Cord-id: vavnl9r3 Document date: 2021_4_26
ID: vavnl9r3
Snippet: Within the recent pandemic, scientists and clinicians are engaged in seeking new technology to stop or slow down the COVID-19 pandemic. The benefit of machine learning, as an essential aspect of artificial intelligence, on past epidemics offers a new line to tackle the novel Coronavirus outbreak. Accurate short-term forecasting of COVID-19 spread plays an essential role in improving the management of the overcrowding problem in hospitals and enables appropriate optimization of the available reso
Document: Within the recent pandemic, scientists and clinicians are engaged in seeking new technology to stop or slow down the COVID-19 pandemic. The benefit of machine learning, as an essential aspect of artificial intelligence, on past epidemics offers a new line to tackle the novel Coronavirus outbreak. Accurate short-term forecasting of COVID-19 spread plays an essential role in improving the management of the overcrowding problem in hospitals and enables appropriate optimization of the available resources (i.e., materials and staff).This paper presents a comparative study of machine learning methods for COVID-19 transmission forecasting. We investigated the performances of deep learning methods, including the hybrid convolutional neural networks-Long short-term memory (LSTM-CNN), the hybrid gated recurrent unit-convolutional neural networks (GAN-GRU), GAN, CNN, LSTM, and Restricted Boltzmann Machine (RBM), as well as baseline machine learning methods, namely logistic regression (LR) and support vector regression (SVR). The employment of hybrid models (i.e., LSTM-CNN and GAN-GRU) is expected to eventually improve the forecasting accuracy of COVID-19 future trends. The performance of the investigated deep learning and machine learning models was tested using confirmed and recovered COVID-19 cases time-series data from seven impacted countries: Brazil, France, India, Mexico, Russia, Saudi Arabia, and the US. The results reveal that hybrid deep learning models can efficiently forecast COVID-19 cases. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models. Furthermore, results showed that LSTM-CNN achieved improved performances with an averaged mean absolute percentage error of 3.718%, among others.
Search related documents:
Co phrase search for related documents- absolute error and accurate forecasting: 1, 2, 3, 4, 5, 6, 7
- absolute error and accurate model: 1, 2, 3, 4, 5, 6, 7, 8
- absolute error and activation function: 1, 2
- absolute error and acute respiratory syndrome: 1, 2, 3, 4
- absolute error and logarithmic error: 1
- absolute error and logistic regression: 1, 2, 3
- absolute error and long cnn lstm short term memory: 1, 2
- absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- absolute error and long lstm short term memory model: 1, 2, 3, 4, 5, 6, 7
- absolute error and long short: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
- absolute error and loss function: 1, 2
- absolute error and lstm capability: 1
- absolute error and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- absolute error and machine learn: 1
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57
- absolute error and machine learning approach: 1, 2, 3
- absolute error and machine learning method: 1, 2, 3
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Co phrase search for related documents, hyperlinks ordered by date