Author: Duan, Fang; Ni, Shiming; Nie, Yuhong; Huang, Qiang; Wu, Kaili
Title: Small interfering RNA targeting for infectedâ€cell polypeptide 4 inhibits herpes simplex virus type 1 replication in retinal pigment epithelial cells Cord-id: s6rd8p41 Document date: 2011_10_20
ID: s6rd8p41
Snippet: Background: This study sought to inhibit herpes simplex virus type 1 replication using small interfering RNA which targeting infectedâ€cell polypeptide 4 genes to mediate transcription of early and late viral genes in herpes simplex virus type 1 lytic (productive) infection in retina epithelial cells. Methods: After pre†or postâ€infecting with herpes simplex virus type 1, small interfering RNAs were transfected into retina epithelial cells. The antiviral effects of small interfering RNA wer
Document: Background: This study sought to inhibit herpes simplex virus type 1 replication using small interfering RNA which targeting infectedâ€cell polypeptide 4 genes to mediate transcription of early and late viral genes in herpes simplex virus type 1 lytic (productive) infection in retina epithelial cells. Methods: After pre†or postâ€infecting with herpes simplex virus type 1, small interfering RNAs were transfected into retina epithelial cells. The antiviral effects of small interfering RNA were evaluated by Western blot, plaque assays, indirect immunofluorescence and reverse transcription polymerase chain reaction. The viral titre was detected by the 50% tissue culture infective dose method. Results: Small interfering RNA decreased infectedâ€cell polypeptide 4 expression in retina epithelial cells that were infected with herpes simplex virus type 1 before or after small interfering RNA transfection. Compared with herpes simplex virus type 1 infection alone or transfection with negative control small interfering RNA, the viral titre and the retina epithelial cell cytopathic effect were significantly decreased in retina epithelial cells transfected with infectedâ€cell polypeptide 4â€targeting small interfering RNA (50 and 100 nM) (P < 0.05). The small interfering RNA effectively silenced herpes simplex virus type 1 infectedâ€cell polypeptide 4 expression on both mRNA and the protein levels (P < 0.05). The inhibition of infectedâ€cell polypeptide 4â€targeting small interfering RNA on infectedâ€cell polypeptide 4 protein expression was also verified by Western blot in herpes simplex virus type 1 infected human cornea epithelial cell, human trabecular meshwork cells and Vero cells. Conclusions: Infectedâ€cell polypeptide 4â€targeting small interfering RNA can inhibit herpes simplex virus type 1 replication in retina epithelial cells, providing a foundation for development of RNA interference as an antiviral therapy.
Search related documents:
Co phrase search for related documents- activate expression and lytic infection: 1
Co phrase search for related documents, hyperlinks ordered by date