Author: van der Most, R G; Heijnen, L; Spaan, W J; de Groot, R J
Title: Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Cord-id: sbkb7c1o Document date: 1992_7_11
ID: sbkb7c1o
Snippet: We describe a novel strategy to site-specifically mutagenize the genome of an RNA virus by exploiting homologous RNA recombination between synthetic defective interfering (DI) RNA and the viral RNA. The construction of a full-length cDNA clone, pMIDI, of a DI RNA of coronavirus MHV strain A59 was reported previously (R.G. Van der Most, P.J. Bredenbeek, and W.J.M. Spaan (1991). J. Virol. 65, 3219-3226). RNA transcribed from this construct, is replicated efficiently in MHV-infected cells. Marker m
Document: We describe a novel strategy to site-specifically mutagenize the genome of an RNA virus by exploiting homologous RNA recombination between synthetic defective interfering (DI) RNA and the viral RNA. The construction of a full-length cDNA clone, pMIDI, of a DI RNA of coronavirus MHV strain A59 was reported previously (R.G. Van der Most, P.J. Bredenbeek, and W.J.M. Spaan (1991). J. Virol. 65, 3219-3226). RNA transcribed from this construct, is replicated efficiently in MHV-infected cells. Marker mutations introduced in MIDI RNA were replaced by the wild-type residues during replication. More importantly, however, these genetic markers were introduced into viral genome: even in the absence of positive selection MHV recombinants could be isolated. This finding provides new prospects for the study of coronavirus replication using recombinant DNA techniques. As a first application, we describe the rescue of the temperature sensitive mutant MHV Albany-4 using DI-directed mutagenesis. Possibilities and limitations of this strategy are discussed.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date