Selected article for: "computational simulation and drug development"

Author: Omotuyi, Olaposi I; Hamada, Tsuyoshi
Title: Human furin Cys198 imposes dihedral and positional restraints on His194 for optimal Ser386-proton transfer.
  • Cord-id: rnibbe19
  • Document date: 2015_1_1
  • ID: rnibbe19
    Snippet: Inhibitors of human furin may represent the clinical remedy for very aggressive cancer, viral, and bacterial infections. Most of the currently available inhibitors are weak in terms of potency, drug-likeness, and furin specificity thereby necessitating the development of newer compounds especially mechanism-based inhibitors. Here, the roles of active site Cys198 (C198), His194 (H194), and Ser386 (S386) were investigated using computational-site-directed mutagenesis and molecular dynamics (MD) si
    Document: Inhibitors of human furin may represent the clinical remedy for very aggressive cancer, viral, and bacterial infections. Most of the currently available inhibitors are weak in terms of potency, drug-likeness, and furin specificity thereby necessitating the development of newer compounds especially mechanism-based inhibitors. Here, the roles of active site Cys198 (C198), His194 (H194), and Ser386 (S386) were investigated using computational-site-directed mutagenesis and molecular dynamics (MD) simulation. Data were obtained from six (6) biosystems: wildtype (C198/S386), furin-C198G (S386), furin-S386G (C198), and their peptide (nascent hydrolyzed peptide H2N-RTRR-CO2) bound complexes. The results strongly supported that in wildtype furin but not S386G and C198G mutants, following S386/scissile carbon attack (4.0 Ã…), the peptide retracted from the active site, representing peptide release post hydrolysis. Furthermore, in S386G mutant, C194 side chain thiolate ion may act as the nucleophile replacement but competing electron-rich centers (H194, H364) and energetically unattainable geometric strain on the peptide may constitute the limiting factors. In biosystems not complexed with peptide (representative of pre-attack state), C198 preferentially engaged H194 imidazole moiety via sulfur-Ï€ bond system causing a dihedral and positional restraints on the imidazole ring for ultimate alignment of its NE2 hydrogen atom with the side chain enolate oxygen of S364 required for optimal proton transfer. In summary, small-molecular-weight compounds with dual serine and cysteine protease inhibitory actions may represent a new class of potent and furin-selective compounds for future clinical applications.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date