Author: Shibly, K. H.; Dey, S. K.; Islam, M. T. U.; Rahman, M. M.
Title: COVID Faster R-CNN: A Novel Framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray Images Cord-id: w2wx7y2v Document date: 2020_5_19
ID: w2wx7y2v
Snippet: COVID-19 or novel coronavirus disease, which has already been declared as a worldwide pandemic, at first had an outbreak in a small town of China, named Wuhan. More than two hundred countries around the world have already been affected by this severe virus as it spreads by human interaction. Moreover, the symptoms of novel coronavirus are quite similar to the general flu. Screening of infected patients is considered as a critical step in the fight against COVID-19. Therefore, it is highly releva
Document: COVID-19 or novel coronavirus disease, which has already been declared as a worldwide pandemic, at first had an outbreak in a small town of China, named Wuhan. More than two hundred countries around the world have already been affected by this severe virus as it spreads by human interaction. Moreover, the symptoms of novel coronavirus are quite similar to the general flu. Screening of infected patients is considered as a critical step in the fight against COVID-19. Therefore, it is highly relevant to recognize positive cases as early as possible to avoid further spreading of this epidemic. However, there are several methods to detect COVID-19 positive patients, which are typically performed based on respiratory samples and among them one of the critical approach which is treated as radiology imaging or X-Ray imaging. Recent findings from X-Ray imaging techniques suggest that such images contain relevant information about the SARS-CoV-2 virus. In this article, we have introduced a Deep Neural Network (DNN) based Faster Regions with Convolutional Neural Networks (Faster R-CNN) framework to detect COVID-19 patients from chest X-Ray images using available open-source dataset. Our proposed approach provides a classification accuracy of 97.36%, 97.65% of sensitivity, and a precision of 99.28%. Therefore, we believe this proposed method might be of assistance for health professionals to validate their initial assessment towards COVID-19 patients.
Search related documents:
Co phrase search for related documents- accuracy feature extraction and machine learn method: 1
- accuracy feature extraction and machine learning: 1, 2, 3
- accuracy feature extraction and machine learning method: 1
- actual class and machine learning: 1
- logarithmic loss and machine learning: 1
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and machine learning method: 1
Co phrase search for related documents, hyperlinks ordered by date