Author: Deimel, Lachlan Paul; Li, Zheyi; Ranasinghe, Charani
Title: Interleukin-13 as a target to alleviate severe coronavirus disease 2019 and restore lung homeostasis. Cord-id: rg3h5i4s Document date: 2021_1_27
ID: rg3h5i4s
Snippet: The ongoing coronavirus disease (COVID-19) pandemic urgently requires the availability of interventions that improve outcomes for those with severe disease. Since severe acute respiratory syndrome coronavirus 2 infection is characterized by dysregulated lung mucosae, and that mucosal homeostasis is heavily influenced by interleukin (IL)-13 activity, we explore recent findings indicating that IL-13 production is proportional to disease severity. We propose that excessive IL-13 contributes to the
Document: The ongoing coronavirus disease (COVID-19) pandemic urgently requires the availability of interventions that improve outcomes for those with severe disease. Since severe acute respiratory syndrome coronavirus 2 infection is characterized by dysregulated lung mucosae, and that mucosal homeostasis is heavily influenced by interleukin (IL)-13 activity, we explore recent findings indicating that IL-13 production is proportional to disease severity. We propose that excessive IL-13 contributes to the progression of severe/fatal COVID-19 by (1) promoting the recruitment of immune cells that express inflammatory cytokines, causing a cytokine storm that results in widespread destruction of lung tissue, (2) directly facilitating tissue-remodeling that causes airway hyperinflammation and obstruction, and (3) diverting the immune system away from developing high-quality cytotoxic T cells that confer effective anti-viral immunity. These factors may cumulatively result in significant lung distress, multi-organ failure, and death. Here, we suggest repurposing existing IL-13-inhibiting interventions, including antibody therapies routinely used for allergic lung hyperinflammation, as well as viral vector-based approaches, to alleviate disease. Since many of these strategies have previously been shown to be both safe and effective, this could prove to be a highly cost-effective solution. Relevance for Patients There remains a desperate need to establish medical interventions that reliably improves outcomes for patients suffering from COVID-19. We explore the role of IL-13 in maintaining homeostasis at the lung mucosae and propose that its dysregulation during viral infection may propagate the hallmarks of severe disease - further exploration may provide a platform for invaluable therapeutics.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome coronavirus and lung hyperinflammation: 1, 2, 3, 4, 5
- acute respiratory syndrome coronavirus and lung mucosa: 1, 2, 3, 4, 5, 6, 7
- acute respiratory syndrome coronavirus and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome coronavirus and lung tissue widespread destruction: 1
Co phrase search for related documents, hyperlinks ordered by date