Author: Hswen, Yulin; Zhang, Amanda; Ventelou, Bruno
Title: Estimation of Asthma Symptom Onset Using Internet Search Queries: Lag-Time Series Analysis Cord-id: o7vso2jl Document date: 2021_5_10
ID: o7vso2jl
Snippet: BACKGROUND: Asthma affects over 330 million people worldwide. Timing of an asthma event is extremely important and lack of identification of asthma increases the risk of death. A major challenge for health systems is the length of time between symptom onset and care seeking, which could result in delayed treatment initiation and worsening of symptoms. OBJECTIVE: This study evaluates the utility of the internet search query data for the identification of the onset of asthma symptoms. METHODS: Pea
Document: BACKGROUND: Asthma affects over 330 million people worldwide. Timing of an asthma event is extremely important and lack of identification of asthma increases the risk of death. A major challenge for health systems is the length of time between symptom onset and care seeking, which could result in delayed treatment initiation and worsening of symptoms. OBJECTIVE: This study evaluates the utility of the internet search query data for the identification of the onset of asthma symptoms. METHODS: Pearson correlation coefficients between the time series of hospital admissions and Google searches were computed at lag times from 4 weeks before hospital admission to 4 weeks after hospital admission. An autoregressive integrated moving average (ARIMAX) model with an autoregressive process at lags of 1 and 2 and Google searches at weeks –1 and –2 as exogenous variables were conducted to validate our correlation results. RESULTS: Google search volume for asthma had the highest correlation at 2 weeks before hospital admission. The ARIMAX model using an autoregressive process showed that the relative searches from Google about asthma were significant at lags 1 (P<.001) and 2 (P=.04). CONCLUSIONS: Our findings demonstrate that internet search queries may provide a real-time signal for asthma events and may be useful to measure the timing of symptom onset.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date