Author: Zheng, Beiwen; Zhang, Qiangmin; Gao, Jia; Han, Huiming; Li, Ming; Zhang, Jingren; Qi, Jianxun; Yan, Jinghua; Gao, George F.
Title: Insight into the Interaction of Metal Ions with TroA from Streptococcus suis Cord-id: sa5snfby Document date: 2011_5_18
ID: sa5snfby
Snippet: BACKGROUND: The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. METHODOLOGY/PRINCIPAL FIN
Document: BACKGROUND: The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn(2+) and Mn(2+). Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn(2+) and Mn(2+) induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn(2+)/Mn(2+) bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport.
Search related documents:
Co phrase search for related documents- absence presence and adaptive role: 1
Co phrase search for related documents, hyperlinks ordered by date