Author: Shakoor, Hira; Feehan, Jack; Dhaheri, Ayesha S Al; Ali, Habiba I; Platat, Carine; Ismail, Leila Cheikh; Apostolopoulos, Vasso; Stojanovska, Lily
Title: Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: could they help against COVID-19? Cord-id: sjqt01gr Document date: 2020_8_9
ID: sjqt01gr
Snippet: The world is currently in the grips of the coronavirus disease (COVID-19) pandemic, caused by the SARS-CoV-2 virus, which has mutated to allow human-to-human spread. Infection can cause fever, dry cough, fatigue, severe pneumonia, respiratory distress syndrome and in some instances death. COVID-19 affects the immune system by producing a systemic inflammatory response, or cytokine release syndrome. Patients with COVID-19 have shown a high level of pro-inflammatory cytokines and chemokines. There
Document: The world is currently in the grips of the coronavirus disease (COVID-19) pandemic, caused by the SARS-CoV-2 virus, which has mutated to allow human-to-human spread. Infection can cause fever, dry cough, fatigue, severe pneumonia, respiratory distress syndrome and in some instances death. COVID-19 affects the immune system by producing a systemic inflammatory response, or cytokine release syndrome. Patients with COVID-19 have shown a high level of pro-inflammatory cytokines and chemokines. There are currently no effective anti-SARS-CoV-2 viral drugs or vaccines. COVID-19 disproportionately affects the elderly, both directly, and through a number of significant age-related comorbidities. Undoubtedly, nutrition is a key determinant of maintaining good health. Key dietary components such as vitamins C, D, E, zinc, selenium and the omega 3 fatty acids have well-established immunomodulatory effects, with benefits in infectious disease. Some of these nutrients have also been shown to have a potential role in the management of COVID-19. In this paper, evidence surrounding the role of these dietary components in immunity as well as their specific effect in COVID-19 patients are discussed. In addition, how supplementation of these nutrients may be used as therapeutic modalities potentially to decrease the morbidity and mortality rates of patients with COVID-19 is discussed.
Search related documents:
Co phrase search for related documents- abstract screening and adequate level: 1
- active hormone and acute respiratory syndrome: 1
- acute ards respiratory distress syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute ards respiratory distress syndrome and adaptive immune system: 1, 2, 3, 4
- acute ards respiratory distress syndrome and adequate ensure: 1, 2, 3, 4
- acute ards respiratory distress syndrome development and adaptive immune response: 1, 2
- acute respiratory distress syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
- acute respiratory distress syndrome and adaptive immune system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute respiratory distress syndrome and adequate ensure: 1, 2, 3, 4, 5, 6, 7, 8
- acute respiratory syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immune response modulate: 1, 2, 3
- acute respiratory syndrome and adaptive immune system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adequate ensure: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- acute respiratory syndrome and adequate intake: 1, 2, 3
- acute response and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute response and adaptive immune system: 1, 2, 3, 4
- acute response and adequate ensure: 1
Co phrase search for related documents, hyperlinks ordered by date