Author: Ayris, Devante; Horbury, Kye; Williams, Blake; Blackney, Mitchell; See, Celine Shi Hui; Shah, Syed Afaq Ali
Title: Deep Learning Models for Early Detection and Prediction of the spread of Novel Coronavirus (COVID-19) Cord-id: sj1lkd7x Document date: 2020_7_29
ID: sj1lkd7x
Snippet: SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally and has become a pandemic. People have lost their lives due to the virus and the lack of counter measures in place. Given the increasing caseload and uncertainty of spread, there is an urgent need to develop machine learning techniques to predict the spread of COVID-19. Prediction of the spread can allow counter measures and actions to be implemented to mitigate the spread of COVID-19. In this paper, we propo
Document: SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally and has become a pandemic. People have lost their lives due to the virus and the lack of counter measures in place. Given the increasing caseload and uncertainty of spread, there is an urgent need to develop machine learning techniques to predict the spread of COVID-19. Prediction of the spread can allow counter measures and actions to be implemented to mitigate the spread of COVID-19. In this paper, we propose a deep learning technique, called Deep Sequential Prediction Model (DSPM) and machine learning based Non-parametric Regression Model (NRM) to predict the spread of COVID-19. Our proposed models were trained and tested on novel coronavirus 2019 dataset, which contains 19.53 Million confirmed cases of COVID-19. Our proposed models were evaluated by using Mean Absolute Error and compared with baseline method. Our experimental results, both quantitative and qualitative, demonstrate the superior prediction performance of the proposed models.
Search related documents:
Co phrase search for related documents- absolute error and accurate prediction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absolute error and accurately spread predict: 1
- absolute error and actual number: 1
- absolute error and actual output: 1
- absolute error and logistic growth: 1, 2
- absolute error and logistic growth model: 1
- absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and loss function: 1, 2
- absolute error and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and machine deep learning: 1, 2, 3, 4, 5, 6
- absolute error and machine learn: 1
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- absolute error and machine learning technique: 1
- absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Co phrase search for related documents, hyperlinks ordered by date