Author: Panigrahi, Debadash
Title: Molecular Docking Analysis of the Phytochemicals from Tinospora Cordifolia as Potential Inhibitor Against Multi Targeted SARS-CoV-2 & Cytokine Storm Cord-id: xmesffps Document date: 2021_1_1
ID: xmesffps
Snippet: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a novel coronavirus, is a member of the Coronoviridae family that has spread worldwide. Developing efficacious therapeutics for the treatment of SARS-CoV-2 is of high priority. Therefore, in this study, the chemical constituents obtained from Tinospora cordifolia are investigated for their in-silico interaction with protein targets crucial for SARSCoV-2 infection and cytokine storm. The five important targets chosen for SARSCoV-2 were t
Document: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a novel coronavirus, is a member of the Coronoviridae family that has spread worldwide. Developing efficacious therapeutics for the treatment of SARS-CoV-2 is of high priority. Therefore, in this study, the chemical constituents obtained from Tinospora cordifolia are investigated for their in-silico interaction with protein targets crucial for SARSCoV-2 infection and cytokine storm. The five important targets chosen for SARSCoV-2 were the main protease (Mpro), Spike receptor binding domain (Spike-RBD), RNA-dependent RNA polymerase (RdRp or Nsp12), nonstructural protein 15 (Nsp15) of SARS-CoV-2 and the host angiotensin converting enzyme-2 (ACE-2) spike-RBD binding domain and cytokine receptors TNF-α (Tumor Necrosis Factor-α) and IL-6 (Interleukine-6). This was accomplished using Maestro 12.4 (Schrodinger Suite) to obtain docking scores. Also, the absorption, distribution, metabolism, elimination, and toxicity parameters (ADMET) were determined using Maestro QikProp modules. The results of computational study revealed that four constituents Cordifolioside-A, Palmatoside-E, Tinocordioside and Tinosporaside significantly antagonize the five targets of SARS-CoV-2 by binding in the binding pocket with docking score ranging from −9.664 to −6.488 kcal/mol and shows drug-like property and also effectively inhibit cytokine storm by antagonizing the TNF-α and IL-6 receptors. Promising drug-like properties, excellent docking scores, and binding pose against each target makes the screened compounds as possible lead candidate which can be further evaluated in future studies to assess their in vitro and in vivo efficacy against SARS-CoV-2. The structure of these compounds can be used further for optimization and design of drugs against COVID-19. [ABSTRACT FROM AUTHOR] Copyright of Journal of Computational Biophysics & Chemistry is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date