Selected article for: "adaptive algorithm and additive noise"

Author: Alasti, Hadi
Title: Communication-Efficient Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks: Two Machine Learning Approaches
  • Cord-id: t8x5w152
  • Document date: 2021_7_30
  • ID: t8x5w152
    Snippet: A low-cost machine learning (ML) algorithm is proposed and discussed for spatial tracking of unknown, correlated signals in localized, ad-hoc wireless sensor networks. Each sensor is modeled as one neuron and a selected subset of these neurons are called to identify the spatial signal. The algorithm is implemented in two phases of spatial modeling and spatial tracking. The spatial signal is modeled using its M iso-contour lines at levels [Formula: see text] and those sensors that their sensor ob
    Document: A low-cost machine learning (ML) algorithm is proposed and discussed for spatial tracking of unknown, correlated signals in localized, ad-hoc wireless sensor networks. Each sensor is modeled as one neuron and a selected subset of these neurons are called to identify the spatial signal. The algorithm is implemented in two phases of spatial modeling and spatial tracking. The spatial signal is modeled using its M iso-contour lines at levels [Formula: see text] and those sensors that their sensor observations are in [Formula: see text] margin of any of these levels report their sensor observations to the fusion center (FC) for spatial signal reconstruction. In spatial modeling phase, the number of these contour lines, their levels and a proper [Formula: see text] are identified. In this phase, the algorithm may either use adaptive-weight stochastic gradient or scaled stochastic gradient method to select a proper [Formula: see text]. Additive white Gaussian noise (AWGN) with zero mean is assumed along with the sensor observations. To reduce the observation noise’s effect, each sensor applies moving average filter on its observation to drastically reduce the effect of noise. The modeling performance, the cost and the convergence of the algorithm are discussed based on extensive computer simulations and reasoning. The algorithm is proposed for climate and environmental monitoring. In this paper, the percentage of wireless sensors that initiate a communication attempt is assumed as cost. The performance evaluation results show that the proposed spatial tracking approach is low-cost and can model the spatial signal over time with the same performance as that of spatial modeling.

    Search related documents: