Author: Mesgarpour, Mehrdad; Abad, Javad Mohebbi Najm; Alizadeh, Rasool; Wongwises, Somchai; Doranehgard, Mohammad Hossein; Jowkar, Saeed; Karimi, Nader
Title: Predicting the effects of environmental parameters on the spatio-temporal distribution of the droplets carrying coronavirus in public transport- A machine learning approach Cord-id: pdw1m268 Document date: 2021_10_7
ID: pdw1m268
Snippet: Human-generated droplets constitute the main route for the transmission of coronavirus. However, the details of such transmission in enclosed environments are yet to be understood. This is because geometrical and environmental parameters can immensely complicate the problem and turn the conventional analyses inefficient. As a remedy, this work develops a predictive tool based on computational fluid dynamics and machine learning to examine the distribution of sneezing droplets in realistic config
Document: Human-generated droplets constitute the main route for the transmission of coronavirus. However, the details of such transmission in enclosed environments are yet to be understood. This is because geometrical and environmental parameters can immensely complicate the problem and turn the conventional analyses inefficient. As a remedy, this work develops a predictive tool based on computational fluid dynamics and machine learning to examine the distribution of sneezing droplets in realistic configurations. The time-dependent effects of environmental parameters, including temperature, humidity and ventilation rate, upon the droplets with diameters between 1 and 250 [Formula: see text] are investigated inside a bus. It is shown that humidity can profoundly affect the droplets distribution, such that 10% increase in relative humidity results in 30% increase in the droplets density at the farthest point from a sneezing passenger. Further, ventilation process is found to feature dual effects on the droplets distribution. Simple increases in the ventilation rate may accelerate the droplets transmission. However, carefully tailored injection of fresh air enhances deposition of droplets on the surfaces and thus reduces their concentration in the bus. Finally, the analysis identifies an optimal range of temperature, humidity and ventilation rate to maintain human comfort while minimising the transmission of droplets.
Search related documents:
Co phrase search for related documents- accuracy enhance and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9
- accurate estimation and adaptive method: 1
- accurate estimation and low intensity: 1
- accurate estimation and machine learning: 1, 2, 3, 4, 5
- accurate estimation and machine validation: 1
- accurate mean and machine learning: 1, 2
- accurate mean and machine learning model: 1
- accurate prediction and loss function: 1, 2
- accurate prediction and low intensity: 1
- accurate prediction and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- accurate prediction and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- accurate prediction and machine validation: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date