Selected article for: "basic reproduction and final epidemic size"

Author: Peter Boldog; Tamas Tekeli; Zsolt Vizi; Attila Denes; Ferenc Bartha; Gergely Rost
Title: Risk assessment of novel coronavirus COVID-19 outbreaks outside China
  • Document date: 2020_2_5
  • ID: ecu579el_31
    Snippet: After calibration of the SE 2 I 3 R model, we numerically calculated the final epidemic size (total cumulative number of cases) in China outside Hubei, using three different basic reproduction numbers and different control functions. The control functions were parametrized by t * , which is the time after 23 January at which the control reaches its maximal value u max . Smaller t * corresponds to more rapid implementation of the control measures......
    Document: After calibration of the SE 2 I 3 R model, we numerically calculated the final epidemic size (total cumulative number of cases) in China outside Hubei, using three different basic reproduction numbers and different control functions. The control functions were parametrized by t * , which is the time after 23 January at which the control reaches its maximal value u max . Smaller t * corresponds to more rapid implementation of the control measures. In Figure 1 , we plotted these cumulative numbers versus t * , and we can observe that the epidemic final size is rather sensitive to the speed of implementation of the control measures. These curves also give upper bounds for the number of cumulative cases at any given time, assuming that the control efforts will be successful.

    Search related documents:
    Co phrase search for related documents