Selected article for: "mortality hospitalization mechanical ventilation and primary endpoint"

Author: Russo, Alessandro; Binetti, Erica; Borrazzo, Cristian; Cacciola, Elio Gentilini; Battistini, Luigi; Ceccarelli, Giancarlo; Mastroianni, Claudio Maria; d’Ettorre, Gabriella
Title: Efficacy of Remdesivir-Containing Therapy in Hospitalized COVID-19 Patients: A Prospective Clinical Experience
  • Cord-id: wo3nwfv2
  • Document date: 2021_8_24
  • ID: wo3nwfv2
    Snippet: Objectives: Remdesivir is currently approved for the treatment of COVID-19. The recommendation for using remdesivir in patients with COVID-19 was based on the in vitro and in vivo activity of this drug against SARS-CoV-2. Methods: This was a prospective observational study conducted on a population of patients hospitalized for COVID-19. The primary endpoint of this study was the impact of remdesivir-containing therapy on 30-day mortality; the secondary endpoint was the impact of remdesivir-conta
    Document: Objectives: Remdesivir is currently approved for the treatment of COVID-19. The recommendation for using remdesivir in patients with COVID-19 was based on the in vitro and in vivo activity of this drug against SARS-CoV-2. Methods: This was a prospective observational study conducted on a population of patients hospitalized for COVID-19. The primary endpoint of this study was the impact of remdesivir-containing therapy on 30-day mortality; the secondary endpoint was the impact of remdesivir-containing therapy on the need for high-flow oxygen therapy (HFNC), non-invasive ventilation (NIV), or mechanical ventilation. The data were analyzed after propensity score matching. Results: A total of 407 patients with SARS-CoV-2 pneumonia were consecutively enrolled. Out of these, 294 (72.2%) were treated with remdesivir and 113 (27.8%) were not. Overall, 61 patients (14.9%) were treated during hospitalization with HFNC, NIV, or mechanical ventilation, while 30-day mortality was observed in 21 patients (5.2%). Univariate analysis of patients treated with remdesivir or not showed no differences in 30-day mortality (4% vs. 6%, p = 0.411) in the two study groups. Cox regression analysis, after propensity score matching, showed that therapies, including remdesivir-containing therapy, were not statistically associated with 30-day survival or mortality. The Kaplan–Meier curves of 30-day survival in patients treated with remdesivir or not before (p = 0.24) and after (p = 0.88) propensity score matching showed no differences between the two study groups. Finally, patients treated with remdesivir or not showed the same need for HFNC/NIV or mechanical ventilation. Conclusions: This real-life experience of remdesivir use in hospitalized patients with COVID-19 was not associated with significant increases in rates of survival or reduced use of HFNC/NIV or mechanical ventilation compared with patients treated with other therapies not including remdesivir.

    Search related documents:
    Co phrase search for related documents
    • acceptable safety profile and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8
    • acceptable safety profile and low mortality: 1
    • acute onset and logistic regression model: 1, 2
    • acute onset and low moderate: 1, 2
    • acute onset and low mortality: 1, 2, 3
    • acute onset and low mortality rate: 1
    • acute respiratory syndrome and local practice: 1, 2
    • acute respiratory syndrome and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and low flow oxygen therapy: 1, 2, 3, 4
    • acute respiratory syndrome and low moderate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and low moderate patient: 1
    • acute respiratory syndrome and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and low mortality rate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome coronavirus and local practice: 1
    • acute respiratory syndrome coronavirus and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome coronavirus and low flow oxygen therapy: 1, 2, 3
    • acute respiratory syndrome coronavirus and low moderate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome coronavirus and low moderate patient: 1
    • acute respiratory syndrome coronavirus and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25