Selected article for: "achieve objective and machine learning"

Author: Kozdrowski, Stanisław; Cichosz, Paweł; Paziewski, Piotr; Sujecki, Sławomir
Title: Machine Learning Algorithms for Prediction of the Quality of Transmission in Optical Networks
  • Cord-id: yx7i6ka9
  • Document date: 2020_12_22
  • ID: yx7i6ka9
    Snippet: Increasing demand in the backbone Dense Wavelength Division (DWDM) Multiplexing network traffic prompts an introduction of new solutions that allow increasing the transmission speed without significant increase of the service cost. In order to achieve this objective simpler and faster, DWDM network reconfiguration procedures are needed. A key problem that is intrinsically related to network reconfiguration is that of the quality of transmission assessment. Thus, in this contribution a Machine Le
    Document: Increasing demand in the backbone Dense Wavelength Division (DWDM) Multiplexing network traffic prompts an introduction of new solutions that allow increasing the transmission speed without significant increase of the service cost. In order to achieve this objective simpler and faster, DWDM network reconfiguration procedures are needed. A key problem that is intrinsically related to network reconfiguration is that of the quality of transmission assessment. Thus, in this contribution a Machine Learning (ML) based method for an assessment of the quality of transmission is proposed. The proposed ML methods use a database, which was created only on the basis of information that is available to a DWDM network operator via the DWDM network control plane. Several types of ML classifiers are proposed and their performance is tested and compared for two real DWDM network topologies. The results obtained are promising and motivate further research.

    Search related documents:
    Co phrase search for related documents
    • absolute number and machine learn: 1
    • absolute number and machine learning: 1
    • absolutely necessary and logistic regression: 1
    • absolutely necessary and logistic regression model: 1
    • acceptable level and machine learning: 1