Author: Mushanyu, J.; Chukwu, W.; Nyabadza, F.; Muchatibaya, G.
Title: Modelling the potential role of super spreaders on COVID-19 transmission dynamics Cord-id: zcv72a1f Document date: 2021_9_2
ID: zcv72a1f
Snippet: Superspreading phenomenon has been observed in many infectious diseases and contributes significantly to public health burden in many countries. Superspreading events have recently been reported in the transmission of the COVID-19 pandemic. The present study uses a set of nine ordinary differential equations to investigate the impact of superspreading on COVID-19 dynamics. The model developed in this study addresses the heterogeineity in infectiousness by taking into account two forms of transmi
Document: Superspreading phenomenon has been observed in many infectious diseases and contributes significantly to public health burden in many countries. Superspreading events have recently been reported in the transmission of the COVID-19 pandemic. The present study uses a set of nine ordinary differential equations to investigate the impact of superspreading on COVID-19 dynamics. The model developed in this study addresses the heterogeineity in infectiousness by taking into account two forms of transmission rate functions for superspreaders based on clinical (infectivity level) and social or environmental (contact level). The basic reproduction number has been derived and the contribution of each infectious compartment towards the generation of new COVID-19 cases is ascertained. Data fitting was performed and parameter values were estimated within plausible ranges. Numerical simulations performed suggest that control measures that decrease the effective contact radius and increase the transmission rate exponent will be greatly beneficial in the control of COVID-19 in the presence of superspreading phenomen
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date