Author: Chezganova, Evgenia; Efimova, Olga; Sakharova, Vera; Efimova, Anna; Sozinov, Sergey; Kutikhin, Anton; Ismagilov, Zinfer; Brusina, Elena
Title: Ventilation-Associated Particulate Matter Is a Potential Reservoir of Multidrug-Resistant Organisms in Health Facilities Cord-id: r6nq0eyd Document date: 2021_6_30
ID: r6nq0eyd
Snippet: Most healthcare-associated infections (HCAIs) develop due to the colonisation of patients and healthcare workers by multidrug-resistant organisms (MDRO). Here, we investigated whether the particulate matter from the ventilation systems (Vent-PM) of health facilities can harbour MDRO and other microbes, thereby acting as a potential reservoir of HCAIs. Dust samples collected in the ventilation grilles and adjacent air ducts underwent a detailed analysis of physicochemical properties and biodivers
Document: Most healthcare-associated infections (HCAIs) develop due to the colonisation of patients and healthcare workers by multidrug-resistant organisms (MDRO). Here, we investigated whether the particulate matter from the ventilation systems (Vent-PM) of health facilities can harbour MDRO and other microbes, thereby acting as a potential reservoir of HCAIs. Dust samples collected in the ventilation grilles and adjacent air ducts underwent a detailed analysis of physicochemical properties and biodiversity. All Vent-PM samples included ultrafine PM capable of reaching the alveoli. Strikingly, >70% of Vent-PM samples were contaminated, mostly by viruses (>15%) or multidrug-resistant and biofilm-producing bacterial strains (60% and 48% of all bacteria-contaminated specimens, respectively). Total viable count at 1 m from the ventilation grilles was significantly increased after opening doors and windows, indicating an association between air flow and bacterial contamination. Both chemical and microbial compositions of Vent-PM considerably differed across surgical vs. non-surgical and intensive vs. elective care units and between health facilities located in coal and chemical districts. Reduced diversity among MDRO and increased prevalence ratio in multidrug-resistant to the total Enterococcus spp. in Vent-PM testified to the evolving antibiotic resistance. In conclusion, we suggest Vent-PM as a previously underestimated reservoir of HCAI-causing pathogens in the hospital environment.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date