Author: Xu, Jincheng; Xu, Xiaoyue; Jiang, Lina; Dua, Kamal; Hansbro, Philip M.; Liu, Gang
Title: SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis Cord-id: yd3nmqmb Document date: 2020_7_14
ID: yd3nmqmb
Snippet: BACKGROUND: Severe acute respiratory syndrome (SARS)-CoV-2-induced coronavirus disease-2019 (COVID-19) is a pandemic disease that affects > 2.8 million people worldwide, with numbers increasing dramatically daily. However, there is no specific treatment for COVID-19 and much remains unknown about this disease. Angiotensin-converting enzyme (ACE)2 is a cellular receptor of SARS-CoV-2. It is cleaved by type II transmembrane serine protease (TMPRSS)2 and disintegrin and metallopeptidase domain (ADA
Document: BACKGROUND: Severe acute respiratory syndrome (SARS)-CoV-2-induced coronavirus disease-2019 (COVID-19) is a pandemic disease that affects > 2.8 million people worldwide, with numbers increasing dramatically daily. However, there is no specific treatment for COVID-19 and much remains unknown about this disease. Angiotensin-converting enzyme (ACE)2 is a cellular receptor of SARS-CoV-2. It is cleaved by type II transmembrane serine protease (TMPRSS)2 and disintegrin and metallopeptidase domain (ADAM)17 to assist viral entry into host cells. Clinically, SARS-CoV-2 infection may result in acute lung injury and lung fibrosis, but the underlying mechanisms of COVID-19 induced lung fibrosis are not fully understood. METHODS: The networks of ACE2 and its interacting molecules were identified using bioinformatic methods. Their gene and protein expressions were measured in human epithelial cells after 24 h SARS-CoV-2 infection, or in existing datasets of lung fibrosis patients. RESULTS: We confirmed the binding of SARS-CoV-2 and ACE2 by bioinformatic analysis. TMPRSS2, ADAM17, tissue inhibitor of metalloproteinase (TIMP)3, angiotensinogen (AGT), transformation growth factor beta (TGFB1), connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF) A and fibronectin (FN) were interacted with ACE2, and the mRNA and protein of these molecules were expressed in lung epithelial cells. SARS-CoV-2 infection increased ACE2, TGFB1, CTGF and FN1 mRNA that were drivers of lung fibrosis. These changes were also found in lung tissues from lung fibrosis patients. CONCLUSIONS: Therefore, SARS-CoV-2 binds with ACE2 and activates fibrosis-related genes and processes to induce lung fibrosis.
Search related documents:
Co phrase search for related documents- abnormal tissue and lung biopsy: 1
- abnormal tissue and lung disease: 1
- accident disease and acute respiratory syndrome: 1
- accident disease and lung cancer: 1
- accident disease and lung cancer patient: 1
- accident disease and lung cancer resection: 1
- accident disease and lung disease: 1, 2
- acute ards respiratory distress syndrome and localization expression: 1, 2, 3
- acute ards respiratory distress syndrome and lung airway: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute ards respiratory distress syndrome and lung alveolar damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute ards respiratory distress syndrome and lung biopsy: 1, 2, 3, 4, 5, 6, 7, 8
- acute ards respiratory distress syndrome and lung cancer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- acute ards respiratory distress syndrome and lung cancer patient: 1
- acute ards respiratory distress syndrome and lung cell population: 1, 2, 3
- acute ards respiratory distress syndrome and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and localization expression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory syndrome and lung cancer patient: 1, 2, 3, 4, 5, 6
- acute respiratory syndrome and lung cancer resection: 1, 2
- acute respiratory syndrome and lung cell population: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date