Selected article for: "accuracy range and machine learning"

Author: Lu, Shasha; Koopialipoor, Mohammadreza; Asteris, Panagiotis G.; Bahri, Maziyar; Armaghani, Danial Jahed
Title: A Novel Feature Selection Approach Based on Tree Models for Evaluating the Punching Shear Capacity of Steel Fiber-Reinforced Concrete Flat Slabs
  • Cord-id: zbbpfaj4
  • Document date: 2020_9_3
  • ID: zbbpfaj4
    Snippet: When designing flat slabs made of steel fiber-reinforced concrete (SFRC), it is very important to predict their punching shear capacity accurately. The use of machine learning seems to be a great way to improve the accuracy of empirical equations currently used in this field. Accordingly, this study utilized tree predictive models (i.e., random forest (RF), random tree (RT), and classification and regression trees (CART)) as well as a novel feature selection (FS) technique to introduce a new mod
    Document: When designing flat slabs made of steel fiber-reinforced concrete (SFRC), it is very important to predict their punching shear capacity accurately. The use of machine learning seems to be a great way to improve the accuracy of empirical equations currently used in this field. Accordingly, this study utilized tree predictive models (i.e., random forest (RF), random tree (RT), and classification and regression trees (CART)) as well as a novel feature selection (FS) technique to introduce a new model capable of estimating the punching shear capacity of the SFRC flat slabs. Furthermore, to automatically create the structure of the predictive models, the current study employed a sequential algorithm of the FS model. In order to perform the training stage for the proposed models, a dataset consisting of 140 samples with six influential components (i.e., the depth of the slab, the effective depth of the slab, the length of the column, the compressive strength of the concrete, the reinforcement ratio, and the fiber volume) were collected from the relevant literature. Afterward, the sequential FS models were trained and verified using the above-mentioned database. To evaluate the accuracy of the proposed models for both testing and training datasets, various statistical indices, including the coefficient of determination (R(2)) and root mean square error (RMSE), were utilized. The results obtained from the experiments indicated that the FS-RT model outperformed FS-RF and FS-CART models in terms of prediction accuracy. The range of R(2) and RMSE values were obtained as 0.9476–0.9831 and 14.4965–24.9310, respectively; in this regard, the FS-RT hybrid technique demonstrated the best performance. It was concluded that the three hybrid techniques proposed in this paper, i.e., FS-RT, FS-RF, and FS-CART, could be applied to predicting SFRC flat slabs.

    Search related documents:
    Co phrase search for related documents
    • absolute error and acceptable range: 1
    • absolute error and accuracy level: 1, 2, 3, 4, 5, 6, 7, 8
    • absolute error and accurate prediction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
    • absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • absolute percentage error and acceptable range: 1
    • absolute percentage error and accuracy level: 1, 2, 3
    • absolute percentage error and accurate prediction: 1, 2, 3, 4
    • absolute percentage error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
    • acceptable level and accuracy level: 1, 2, 3, 4, 5
    • acceptable level and machine learning: 1
    • acceptable model performance and machine learning: 1
    • accuracy high quality and machine learning: 1
    • accuracy level and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    • accurate prediction and actual value: 1
    • accurate prediction and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • actual value and machine learning: 1, 2, 3