Author: Xu, Benhong; Lei, Yuxuan; Ren, Xiaohu; Yin, Feng; Wu, Weihua; Sun, Ying; Wang, Xiaohui; Sun, Qian; Yang, Xifei; Wang, Xin; Zhang, Renli; Li, Zigang; Fang, Shisong; Liu, Jianjun
Title: SOD1 is a Possible Predictor of COVID-19 Progression as Revealed by Plasma Proteomics Cord-id: uv54kjzb Document date: 2021_6_24
ID: uv54kjzb
Snippet: [Image: see text] The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide health emergency. Patients infected with SARS-CoV-2 present with diverse symptoms related to the severity of the disease. Determining the proteomic changes associated with these diverse symptoms and in different stages of infection is beneficial for clinical diagnosis and management. Here, we performed a tandem mass tag-labeling proteomi
Document: [Image: see text] The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide health emergency. Patients infected with SARS-CoV-2 present with diverse symptoms related to the severity of the disease. Determining the proteomic changes associated with these diverse symptoms and in different stages of infection is beneficial for clinical diagnosis and management. Here, we performed a tandem mass tag-labeling proteomic study on the plasma of healthy controls and COVID-19 patients, including those with asymptomatic infection (NS), mild syndrome, and severe syndrome in the early phase and the later phase. Although the number of patients included in each group is low, our comparative proteomic analysis revealed that complement and coagulation cascades, cholesterol metabolism, and glycolysis-related proteins were affected after infection with SARS-CoV-2. Compared to healthy controls, ELISA analysis confirmed that SOD1, PRDX2, and LDHA levels were increased in the patients with severe symptoms. Both gene set enrichment analysis and receiver operator characteristic analysis indicated that SOD1 could be a pivotal indicator for the severity of COVID-19. Our results indicated that plasma proteome changes differed based on the symptoms and disease stages and SOD1 could be a predictor protein for indicating COVID-19 progression. These results may also provide a new understanding for COVID-19 diagnosis and treatment.
Search related documents:
Co phrase search for related documents- acquisition mode and acute respiratory syndrome: 1, 2
- actin binding and acute respiratory syndrome: 1
- acute respiratory syndrome and adaptive immunity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immunity innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and lung cell downregulate: 1
- acute respiratory syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- adaptive immunity and lung injury: 1, 2, 3, 4, 5, 6, 7
- adaptive immunity innate and lung injury: 1, 2, 3, 4, 5
Co phrase search for related documents, hyperlinks ordered by date