Author: Barros, Bruno; Lacerda, Paulo; Albuquerque, Célio; Conci, Aura
Title: Pulmonary COVID-19: Learning Spatiotemporal Features Combining CNN and LSTM Networks for Lung Ultrasound Video Classification Cord-id: uvtlivpd Document date: 2021_8_14
ID: uvtlivpd
Snippet: Deep Learning is a very active and important area for building Computer-Aided Diagnosis (CAD) applications. This work aims to present a hybrid model to classify lung ultrasound (LUS) videos captured by convex transducers to diagnose COVID-19. A Convolutional Neural Network (CNN) performed the extraction of spatial features, and the temporal dependence was learned using a Long Short-Term Memory (LSTM). Different types of convolutional architectures were used for feature extraction. The hybrid mod
Document: Deep Learning is a very active and important area for building Computer-Aided Diagnosis (CAD) applications. This work aims to present a hybrid model to classify lung ultrasound (LUS) videos captured by convex transducers to diagnose COVID-19. A Convolutional Neural Network (CNN) performed the extraction of spatial features, and the temporal dependence was learned using a Long Short-Term Memory (LSTM). Different types of convolutional architectures were used for feature extraction. The hybrid model (CNN-LSTM) hyperparameters were optimized using the Optuna framework. The best hybrid model was composed of an Xception pre-trained on ImageNet and an LSTM containing 512 units, configured with a dropout rate of 0.4, two fully connected layers containing 1024 neurons each, and a sequence of 20 frames in the input layer [Formula: see text]. The model presented an average accuracy of 93% and sensitivity of 97% for COVID-19, outperforming models based purely on spatial approaches. Furthermore, feature extraction using transfer learning with models pre-trained on ImageNet provided comparable results to models pre-trained on LUS images. The results corroborate with other studies showing that this model for LUS classification can be an important tool in the fight against COVID-19 and other lung diseases.
Search related documents:
Co phrase search for related documents- accuracy obtain and adam optimizer: 1
- accuracy obtain and long lstm short term memory: 1
- activation function and acute ards respiratory distress syndrome: 1, 2, 3, 4
- activation function and adam optimizer: 1, 2, 3
- activation function and long lstm short term memory: 1, 2
- adam optimizer and long lstm short term memory: 1, 2
Co phrase search for related documents, hyperlinks ordered by date