Author: Zhang, Jimmy; Jun, Tomi; Frank, Jordi; Nirenberg, Sharon; Kovatch, Patricia; Huang, Kuan-lin
Title: Prediction of individual COVID-19 diagnosis using baseline demographics and lab data Cord-id: roi7j46i Document date: 2021_7_6
ID: roi7j46i
Snippet: The global surge in COVID-19 cases underscores the need for fast, scalable, and reliable testing. Current COVID-19 diagnostic tests are limited by turnaround time, limited availability, or occasional false findings. Here, we developed a machine learning-based framework for predicting individual COVID-19 positive diagnosis relying only on readily-available baseline data, including patient demographics, comorbidities, and common lab values. Leveraging a cohort of 31,739 adults within an academic h
Document: The global surge in COVID-19 cases underscores the need for fast, scalable, and reliable testing. Current COVID-19 diagnostic tests are limited by turnaround time, limited availability, or occasional false findings. Here, we developed a machine learning-based framework for predicting individual COVID-19 positive diagnosis relying only on readily-available baseline data, including patient demographics, comorbidities, and common lab values. Leveraging a cohort of 31,739 adults within an academic health system, we trained and tested multiple types of machine learning models, achieving an area under the curve of 0.75. Feature importance analyses highlighted serum calcium levels, temperature, age, lymphocyte count, smoking, hemoglobin levels, aspartate aminotransferase levels, and oxygen saturation as key predictors. Additionally, we developed a single decision tree model that provided an operable method for stratifying sub-populations. Overall, this study provides a proof-of-concept that COVID-19 diagnosis prediction models can be developed using only baseline data. The resulting prediction can complement existing tests to enhance screening and pandemic containment workflows.
Search related documents:
Co phrase search for related documents- abnormal liver and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8
- abnormal liver and logistic regression model: 1
- abnormal liver and lymphocyte count: 1, 2, 3, 4, 5, 6, 7
- abnormal liver function and logistic regression: 1, 2, 3
- abnormal liver function and logistic regression model: 1
- abnormal liver function and lymphocyte count: 1, 2, 3, 4, 5, 6
- actual outcome and logistic regression: 1
- actual outcome and logistic regression model: 1
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute ards respiratory distress syndrome and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- additive explanation and logistic regression: 1, 2, 3
- additive explanation and logistic regression model: 1
- logistic regression and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learn: 1
- logistic regression model and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression model and machine learn: 1
Co phrase search for related documents, hyperlinks ordered by date