Author: Gladding, Patrick A; Ayar, Zina; Smith, Kevin; Patel, Prashant; Pearce, Julia; Puwakdandawa, Shalini; Tarrant, Dianne; Atkinson, Jon; McChlery, Elizabeth; Hanna, Merit; Gow, Nick; Bhally, Hasan; Read, Kerry; Jayathissa, Prageeth; Wallace, Jonathan; Norton, Sam; Kasabov, Nick; Calude, Cristian S; Steel, Deborah; Mckenzie, Colin
                    Title: A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data  Cord-id: vhlbg54d  Document date: 2021_6_12
                    ID: vhlbg54d
                    
                    Snippet: Aim: We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). Materials & methods: High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 patients. Predictive models for age, sex and individuality were developed to demonstrate the personalized nature of hematology data. Both numeric and raw flow cytometry data were used for both supervised and
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Aim: We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). Materials & methods: High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 patients. Predictive models for age, sex and individuality were developed to demonstrate the personalized nature of hematology data. Both numeric and raw flow cytometry data were used for both supervised and unsupervised ML to predict the presence of pneumonia, urinary tract infection and COVID-19. Heart failure was used as an objective to prove method generalizability. Results: Chronological age was predicted by a deep neural network with R(2): 0.59; mean absolute error: 12; sex with AUROC: 0.83, phi: 0.47; individuality with 99.7% accuracy, phi: 0.97; pneumonia with AUROC: 0.74, sensitivity 58%, specificity 79%, 95% CI: 0.73–0.75, p < 0.0001; urinary tract infection AUROC: 0.68, sensitivity 52%, specificity 79%, 95% CI: 0.67–0.68, p < 0.0001; COVID-19 AUROC: 0.8, sensitivity 82%, specificity 75%, 95% CI: 0.79–0.8, p = 0.0006; and heart failure area under the receiver operator curve (AUROC): 0.78, sensitivity 72%, specificity 72%, 95% CI: 0.77–0.78; p < 0.0001. Conclusion: ML applied to hematology data could predict communicable and noncommunicable diseases, both at local and global levels.
 
  Search related documents: 
                                Co phrase  search for related documents- accuracy high degree and logistic regression model: 1
- accuracy high degree and low positive: 1
- accuracy high degree and machine learning: 1, 2, 3, 4
 
                                Co phrase  search for related documents, hyperlinks ordered by date